2023届陇南市重点中学数学九年级第一学期期末质量检测试题含解析_第1页
2023届陇南市重点中学数学九年级第一学期期末质量检测试题含解析_第2页
2023届陇南市重点中学数学九年级第一学期期末质量检测试题含解析_第3页
2023届陇南市重点中学数学九年级第一学期期末质量检测试题含解析_第4页
2023届陇南市重点中学数学九年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知圆锥的母线长为4,底面圆的半径为3,则此圆锥的侧面积是()A.6π B.9π C.12π D.16π2.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定3.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.4.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数5.两相似三角形的相似比为,它们的面积之差为15,则面积之和是()A.39 B.75 C.76 D.406.如右图要测量小河两岸相对的两点、的距离,可以在小河边取的垂线上的一点,测得米,,则小河宽为()A.米 B.米 C.米 D.米7.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30° B.40° C.50° D.60°8.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1 B.2 C.3 D.49.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)10.二次根式有意义的条件是()A.x>-1 B.x≥-1 C.x≥1 D.x=-1二、填空题(每小题3分,共24分)11.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.12.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.13.若双曲线的图象在第二、四象限内,则的取值范围是________.14.在中,,,,则的值是__________.15.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.16.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.17.如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为_____.18.当时,函数的最大值是8则=_________.三、解答题(共66分)19.(10分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.20.(6分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?21.(6分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长.(2)求经过O,D,C三点的抛物线的解析式.(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.22.(8分)在平面直角坐标系xOy中,抛物线与y轴交于点A.(1)直接写出点A的坐标;(2)点A、B关于对称轴对称,求点B的坐标;(3)已知点,.若抛物线与线段PQ恰有两个公共点,结合函数图象,求a的取值范围.23.(8分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.24.(8分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有名,D类男生有名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,25.(10分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.26.(10分)如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.

参考答案一、选择题(每小题3分,共30分)1、C【分析】圆锥的侧面积就等于经母线长乘底面周长的一半.依此公式计算即可.【详解】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12π,故选C.考点:圆锥的计算.2、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.3、A【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4、A【解析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】由于关于x的方程ax2+bx+c=1是一元二次方程,所以二次项系数不为零,即a≠1.故选:A.【点睛】此题考查一元二次方程的定义,熟记一元二次方程满足的条件即可正确解题.5、A【分析】由两相似三角形的相似比为,得它们的面积比为4:9,设它们的面积分别为4x,9x,列方程,即可求解.【详解】∵两相似三角形的相似比为,∴它们的面积比为4:9,设它们的面积分别为4x,9x,则9x-4x=15,∴x=3,∴9x+4x=13x=13×3=39.故选A.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.6、A【分析】根据锐角三角函数的定义即可得出结论.【详解】解:在Rt△ACP中,tan∠ACP=∴米故选A.【点睛】此题考查是解直角三角形,掌握锐角三角函数的定义是解决此题的关键.7、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.【详解】解:根据圆周角定理,得∠BOC=2∠A=80°∵OB=OC∴∠OBC=∠OCB==50°,故选:C.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解题的关键.8、C【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】有三个①∠ABC=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选C【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题的关键9、A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.10、C【解析】根据二次根式有意义,被开方数为非负数,列不等式求出x的取值范围即可.【详解】∵二次根式有意义,∴x-1≥0,∴x≥1,故选:C.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.二、填空题(每小题3分,共24分)11、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【详解】一辆向左转,一辆向右转的情况有两种,则概率是.【点睛】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.12、y=2x﹣1【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO+∠BAO=∠BAO+∠CAD,∴∠ABO=∠CAD,在△ACD和△BAO中,∴△ACD≌△BAO(AAS)∴AD=OB=2,CD=OA=4,∴C(6,4)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,∴∴直线AC的解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C的坐标是解题的关键,难度中等.13、m<8【分析】对于反比例函数:当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限.【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.14、【分析】直接利用正弦的定义求解即可.【详解】解:如下图,在中,故答案为:.【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键.15、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.16、3500【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【详解】由10户家庭一周内使用环保方便袋的数量可知平均每户一周使用的环保方便袋的数量为则该小区500户家庭一周内需要环保方便袋约为,故答案为3500.【点睛】本题考查的是样本平均数的求法与意义,能够知道平均数的计算方法是解题的关键.17、1【分析】根据平行线分线段成比例定理得到,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.18、或【分析】先求出二次函数的对称轴,根据开口方向分类讨论决定取值,列出关于a的方程,即可求解;【详解】解:函数,则对称轴为x=2,对称轴在范围内,当a<0时,开口向下,有最大值,最大值在x=2处取得,即=8,解得a=;当a>0时,开口向上,最大值在x=-3处取得,即=8,解得a=;故答案为:或;【点睛】本题主要考查了二次函数的最值,掌握二次函数的性质是解题的关键.三、解答题(共66分)19、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)y=﹣x+150(0<x≤90);(2)70【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可.【详解】(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150(0<x≤90);(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).答:该批发商若想获得4000元的利润,应将售价定为70元.【点睛】本题考查了一元二次方程的应用,一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出方程.21、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在Rt△COE中,由勾股定理可求得OE的长;

(2)设AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;

(3)用含t的式子表示出BP、EQ的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)∵OABC为矩形,∴BC=AO=5,CO=AB=1.又由折叠可知,,;(2)设AD=m,则DE=BD=1-m,

∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵该抛物线经过C(-1,0)、O(0,0),∴设该抛物线解析式为,把点D代入上式得,∴a=,∴;(3)如图所示,连接DP、DQ.由题意可得,CP=2t,EQ=t,则BP=5-2t.当DP=DQ时,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故当t=时,DP=DQ;(1)∵抛物线的对称轴为直线x==-2,

∴设N(-2,n),

又由(2)可知C(-1,0),E(0,-3),设M(m,y),

①当EN为对角线,即四边形ECNM是平行四边形时,如图1,

则线段EN的中点横坐标为=-1,线段CM的中点横坐标为,

∵EN,CM互相平分,

∴=-1,解得m=2,

又M点在抛物线上,

∴y=×22+×2=16,

∴M(2,16);

②当EM为对角线,即四边形ECMN是平行四边形时,如图2,

则线段EM的中点横坐标为,线段CN中点横坐标为,∵EM,CN互相平分,

∴m=-3,解得m=-6,

又∵M点在抛物线上,,∴M(-6,16);

③当CE为对角线,即四边形EMCN是平行四边形时,如图3,

线段CE的中点的横坐标为=-2,线段MN的中点的横坐标为,∵CE与MN互相平分,∴,解得m=-2,

当m=-2时,y=,即M.综上可知,存在满足条件的点M,其坐标为(2,16)或(-6,16)或.【点睛】本题是二次函数的综合题,涉及待定系数法求二次函数解析式、全等三角形的判定和性质、折叠的性质、矩形的性质以及平行四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题,第(1)小题注意分类讨论思想的应用.22、(1)(0,-3);(2)B(2,-3);(3)或【分析】(1)题干要求直接写出点A的坐标,将x=0代入即可求出;(2)由题意知点A、B关于对称轴对称,求出对称轴从而即可求点B的坐标;(3)结合函数图象,抛物线与线段PQ恰有两个公共点,分别对有两个公共点的情况进行讨论求解.【详解】解:(1)由题意抛物线与y轴交于点A,将x=0代入求出坐标为;(2)∵;∴.(3)当抛物线过点P(4,0)时,,∴.此时,抛物线与线段PQ有两个公共点.当抛物线过点时,a=1,此时,抛物线与线段PQ有两个公共点.∵抛物线与线段PQ恰有两个公共点,∴.当抛物线开口向下时,.综上所述,当或时,抛物线与线段PQ恰有两个公共点.【点睛】本题考查二次函数图像相关性质,熟练掌握二次函数图像相关性质是解题的关键.23、证明见解析.【分析】连接OD,根据弧长公式求出AOD的度数,再证明AB⊥BC即可;【详解】证明:如图,连接,是直径且

.

设,的长为,

解得.

在☉O中,..

,,即又为直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论