2022-2023学年安徽省蚌埠固镇县联考数学九上期末教学质量检测模拟试题含解析_第1页
2022-2023学年安徽省蚌埠固镇县联考数学九上期末教学质量检测模拟试题含解析_第2页
2022-2023学年安徽省蚌埠固镇县联考数学九上期末教学质量检测模拟试题含解析_第3页
2022-2023学年安徽省蚌埠固镇县联考数学九上期末教学质量检测模拟试题含解析_第4页
2022-2023学年安徽省蚌埠固镇县联考数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图所示的几何体,它的俯视图是()A. B.C. D.2.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(

)A. B. C. D.33.如图,在⊙中,半径垂直弦于,点在⊙上,,则半径等于()A. B. C. D.4.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法5.如图,△∽△,若,,,则的长是()A.2 B.3 C.4 D.56.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.127.下列二次根式中,是最简二次根式的是()A. B. C. D.8.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小9.若一次函数的图象不经过第二象限,则关于的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定10.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数 B.方差 C.中位数 D.极差二、填空题(每小题3分,共24分)11.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为_____.12.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(只需写一个).13.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.14.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.15.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.16.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)17.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是_____.18.抛物线y=2x2﹣4x+1的对称轴为直线__.三、解答题(共66分)19.(10分)在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.20.(6分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(,);求该一次函数的解析式;求的面积.21.(6分)已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.(1)求与满足的关系式;(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求的值;(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.22.(8分)如图,在△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,连接OD,点E在BC上,BE=DE.(1)求证:DE是⊙O的切线;(2)若BC=6,求线段DE的长;(3)若∠B=30°,AB=8,求阴影部分的面积(结果保留).23.(8分)在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别.(1)随机地从箱子里取出一个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.24.(8分)如图,是一个锐角三角形,分别以、向外作等边三角形、,连接、交于点,连接.(1)求证:(2)求证:25.(10分)如图,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分别为D,E,F.(1)求证:CE•CA=CF•CB;(2)EF交CD于点O,求证:△COE∽△FOD;26.(10分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.【详解】从几何体上面看,有三列,第一列2个,第二列1个位于第2层,第三列1个位于第2层.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2、B【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.3、B【分析】直接利用垂径定理进而结合圆周角定理得出是等腰直角三角形,进而得出答案.【详解】半径弦于点,,,,是等腰直角三角形,,,则半径.故选:B.【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出是等腰直角三角形是解题关键.4、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.5、C【分析】根据相似三角形的性质,列出对应边的比,再根据已知条件即可快速作答.【详解】解:∵△∽△∴∴解得:AB=4故答案为C.【点睛】本题主要考查了相似三角形的性质,解题的关键是找对相似三角形的对应边,并列出比例进行求解.6、C【解析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.7、C【分析】最简二次根式须同时满足两个条件:一是被开方数中不含分母,二是被开方数中不含能开的尽方的因数或因式,据此逐项判断即得答案.【详解】解:A、,故不是最简二次根式,本选项不符合题意;B、中含有分母,故不是最简二次根式,本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、,故不是最简二次根式,本选项不符合题意.故选:C.【点睛】本题考查了最简二次根式的定义,属于基础题型,熟知概念是关键.8、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;

B选项:反比例函数的图象关于原点中心对称,故本选项错误;

C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;

D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.

故选B.9、A【分析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.【详解】解:一次函数的图象不经过第二象限,,,,方程有两个不相等的实数根.故选.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.10、C【解析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.二、填空题(每小题3分,共24分)11、1【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【详解】∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=1.故答案为:1.【点睛】本题考查了圆周角定理的推论及垂径定理,掌握“直径所对的圆周角是直角”,及垂径定理是关键.12、【解析】试题分析:有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.所以在本题的条件的需要满足考点:相似三角形的判定点评:解答本题的的关键是熟练掌握有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.13、6或14【解析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.14、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长15、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.16、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm,依题意有

(50-x)(39-x)=1.

故答案为:.【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.17、10%【分析】设11、12两月平均每月降价的百分率是x,那么11月份的房价为7000(1−x),12月份的房价为7000(1−x)2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x,由题意,得:7000(1﹣x)2=5670,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.18、x=1【详解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).三、解答题(共66分)19、(1);(2)或;(3)结论成立,理由见解析【分析】(1)设影子抛物线表达式是,先求出原抛物线的顶点坐标,代入,可求解;(2)设原抛物线表达式是,用待定系数法可求,,即可求解;(3)分别求出两个抛物线的顶点坐标,即可求解.【详解】解:(1)原抛物线表达式是原抛物线顶点是,设影子抛物线表达式是,将代入,解得,所以“影子抛物线”的表达式是;(2)设原抛物线表达式是,则原抛物线顶点是,将代入,得①,将代入,②,由①、②解得,.所以,原抛物线表达式是或;(3)结论成立.设影子抛物线表达式是.原抛物线于轴交点坐标为则两条原抛物线可表示为与抛物线(其中、、、是常数,且,由题意,可知两个抛物线的顶点分别是、将、分别代入,得消去得,,,,、关于轴对称.【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,理解“影子抛物线”的定义并能运用是本题的关键.20、(1);(2);(3)1【分析】(1)根据正比例函数即可得出答案;(2)根据点A和B的坐标,利用待定系数法求解即可;(3)先根据题(2)求出点C的坐标,从而可知OC的长,再利用三角形的面积公式即可得.【详解】(1)将代入正比例函数得,故点的坐标是;(2)设这个一次函数的解析式为把代入,得解方程组,得故这个一次函数的解析式为;(3)在中,令,得即点的坐标是,则的面积故的面积为1.【点睛】本题考查了一次函数的几何应用、利用待定系数法求一次函数的解析式,掌握一次函数的图象与性质是解题关键.21、(1);(2);(3).【分析】(1)将抛物线解析式进行因式分解,可求出A点坐标,得到OA长度,再由C点坐标得到OC长度,然后利用OC=2AO建立等量关系即可得到关系式;(2)利用待定系数法求出直线BC的k,根据平行可知AD直线的斜率k与BC相等,可求出直线AD解析式,与抛物线联立可求D点坐标,过P作PE⊥x轴交AD于点E,求出PE即可表示△ADP的面积,从而建立方程求解;(3)为方便书写,可设抛物线解析式为:,设,,过点M的切线解析式为,两抛物线与切线联立,由可求k,得到M、N的坐标满足,将(1,-1)代入,推出G为直线上的一点,由垂线段最短,求出OG垂直于直线时的值即为最小值.【详解】解:(1)令y=0,,解得,令x=0,则∵,A在B左边∴A点坐标为(-m,0),B点坐标为(4m,0),C点坐标为(0,-4am2)∴AO=m,OC=4am2∵OC=2AO∴4am2=2m∴(2)∵∴C点坐标为(0,-2m)设BC直线为,代入B(4m,0),C(0,-2m)得,解得∵AD∥BC,∴设直线AD为,代入A(-m,0)得,,∴∴直线AD为直线AD与抛物线联立得,,解得或∴D点坐标为(5m,3m)又∵∴顶点P坐标为如图,过P作PE⊥x轴交AD于点E,则E点横坐标为,代入直线AD得∴PE=∴S△ADP=解得∵m>0∴∴.(3)在(2)的条件下,可设抛物线解析式为:,设,,过点M的切线解析式为,将抛物线与切线解析式联立得:,整理得,∵,∴方程可整理为∵只有一个交点,∴整理得即解得∴过M的切线为同理可得过N的切线为由此可知M、N的坐标满足将代入整理得将(1,-1)代入得在(2)的条件下,抛物线解析式为,即∴整理得∴G点坐标满足,即G为直线上的一点,当OG垂直于直线时,OG最小,如图所示,直线与x轴交点H(5,0),与y轴交点F(0,)∴OH=5,OF=,FH=∵∴∴OG的最小值为.【点睛】本题考查二次函数与一次函数的综合问题,难度很大,需要掌握二次函数与一次函数的图像与性质和较强的数形结合能力.22、(1)详见解析;(2)3;(3)【分析】(1)根据OA=OD,BE=DE,得∠A=∠1,∠B=∠2,根据∠ACB=90°,即可得∠1+∠2=90°,即可得OD⊥DE,从而可证明结论;(2)连接CD,根据现有条件推出CE是⊙O的切线,再结合DE是⊙O的切线,推出DE=CE又BE=DE,即可得出DE;(3)过O作OG⊥AD,垂足为G,根据已知条件推出AD,AG和OG的值,再根据,即可得出答案.【详解】解:(1)证明:∵OA=OD,BE=DE,∴∠A=∠1,∠B=∠2,∵△ABC中,∠ACB=90°,∴∠A+∠B=90°,∴∠1+∠2=90°,∴∠ODE=180°-(∠1+∠2)=90°,∴OD⊥DE,又OD为⊙O的半径,∴DE是⊙O的切线;(2)连接CD,则∠ADC=90°,∵∠ACB=90°,∴AC⊥BC,又AC为⊙O的直径,∴CE是⊙O的切线,又DE是⊙O的切线,∴DE=CE又BE=DE,∴DE=CE=BE=;(3)过O作OG⊥AD,垂足为G,则,∵Rt△ABC中,∠B=30°,AB=8,∴AC=,∠A=60°(又OA=OD),∴∠COD=120°,△AOD为等边三角形,∴AD=AO=OD=2,∴,∴OG,∴,∴阴影部分的面积为.【点睛】本题考查了圆的切线的性质和判定,三角函数和等边三角形的性质,掌握知识点是解题关键.23、(1);(2)【分析】(1)已知由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,所以可利用概率公式求解即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.【详解】解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:.考点:用列表法或树状图法求概率.24、(1)见解析;(2)见解析【分析】(1)过A作AM⊥CD于M,AN⊥BE于N,设AB与CD相交于点G.根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,根据全等三角形的判定定理即可得△ACD≌△AEB,根据全等三角形的性质可得AM=AN,根据角平分线的判定定理即可得到∠DFA=∠AFE,再根据全等三角形的对应角相等和三角形内角和等于180°得到∠DFB=∠DAG=60°,即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)过A作AM⊥CD于M,AN⊥BE于N,设AB与CD相交于点G.∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB,∴CD=BE,∠ADG=∠ABF,△ADC的面积=△ABE的面积,∴CD•AM=BE•AN,∴AM=AN,∴AF是∠DFE的平分线,∴∠DFA=∠AFE.∵∠ADG=∠ABF,∠AGD=∠BGF,∴∠DFB=∠DAG=60°,∴∠GFE=120°,∴∠BFD=∠DFA=∠AFE.(2)如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论