黑龙江省哈尔滨市依兰县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第1页
黑龙江省哈尔滨市依兰县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第2页
黑龙江省哈尔滨市依兰县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第3页
黑龙江省哈尔滨市依兰县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第4页
黑龙江省哈尔滨市依兰县2022-2023学年数学九年级第一学期期末达标测试试题含解析_第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知实数m,n满足条件m2﹣7m+2=0,n2﹣7n+2=0,则+的值是()A. B. C.或2 D.或22.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+23.二次函数的最小值是()A.2 B.2 C.1 D.14.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A. B. C. D.5.方程的根为()A. B. C.或 D.或6.如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时,.其中正确的是()A.①③ B.②③ C.①④ D.②④7.下表是一组二次函数的自变量x与函数值y的对应值:

1

1.1

1.2

1.3

1.4

-1

-0.49

0.04

0.59

1.16

那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.38.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35° B.45° C.55° D.65°9.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150° D.60°或120°10.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想11.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-212.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2二、填空题(每题4分,共24分)13.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为.14.如图,点B是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣(x<0)的图象于点A,以AB为边作平行四边形ABCD,其中C、D在x轴上,则平行四边形ABCD的面积为_____.15.某班级中有男生和女生各若干,如果随机抽取1人,抽到男生的概率是,那么抽到女生的概率是_____.16.已知点与点,两点都在反比例函数的图象上,且<<,那么______________.(填“>”,“=”,“<”)17.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则sin(α+β)=_____________.18.一次测试,包括甲同学在内的6名同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_____分.三、解答题(共78分)19.(8分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:00.511.522.533.5400.71.72.94.85.24.60请求出表中小东漏填的数;(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当的面积为时,求出的长.20.(8分)已知:在△ABC中,点D、点E分别在边AB、AC上,且DE//BC,BE平分∠ABC.(1)求证:BD=DE;(2)若AB=10,AD=4,求BC的长.21.(8分)已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=x+3上,求m的值.22.(10分)如图,破残的圆形轮片上,弦的垂直平分线交于点,交弦于点.已知cm,cm.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.23.(10分)如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,请在图中画出旋转后的图形△A′B′C,点B′的坐标为________;(2)在(1)的条件下,求出点A经过的路径的长(结果保留π).24.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?25.(12分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)26.如图,,,,.求和的长.

参考答案一、选择题(每题4分,共48分)1、D【分析】①m≠n时,由题意可得m、n为方程x2﹣7x+2=0的两个实数根,利用韦达定理得出m+n、mn的值,将要求的式子转化为关于m+n、mn的形式,整体代入求值即可;②m=n,直接代入所求式子计算即可.【详解】①m≠n时,由题意得:m、n为方程x2﹣7x+2=0的两个实数根,∴m+n=7,mn=2,+====;②m=n时,+=2.故选D.【点睛】本题主要考查一元二次方程根与系数的关系,分析出m、n是方程的两个根以及分类讨论是解题的关键.2、C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.3、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.4、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.5、D【分析】用直接开平方法解方程即可.【详解】x-1=±1x1=2,x2=0故选:D【点睛】本题考查的是用直接开平方法解一元二次方程,关键是要掌握开平方的方法,解题时要注意符号.6、D【分析】根据抛物线与y轴交于点(0,3),可得出k的值为4,从而得出抛物线的解析式为,将(-2,3)代入即可判断正确与否,抛物线与x轴的交点A(1,0),因此得出三角形的面积为2,当x-3<x<1时,y>0.据此判断④正确.【详解】解:把(0,3)代入抛物线解析式求出k=4,选项①错误,由此得出抛物线解析式为:,将(-2,3)代入解析式可得出选项②正确;抛物线与x轴的两交点分别为(1,0),(-3,0),∴OA=1,∵点M到x轴的距离为4,∴,选项③错误;∵当x-3<x<1时,y>0.∵∴y>0,选项④正确,故答案为D.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目找出抛物线的解析式是解题的关键,再利用其性质求解.7、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.8、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案为A.【点睛】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.9、D【解析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.【详解】由图可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.10、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.11、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.12、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.二、填空题(每题4分,共24分)13、.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.14、1.【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得AB的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解【详解】设A的纵坐标是b,则B的纵坐标也是b把y=b代入y=得,b=则x=,即B的横坐标是同理可得:A的横坐标是:则AB=-()=则S=×b=1.故答案为1【点睛】此题考查反比例函数系数k的几何意义,解题关键在于设A的纵坐标为b15、【分析】由于抽到男生的概率与抽到女生的概率之和为1,据此即可求出抽到女生的概率.【详解】解:∵抽到男生的概率是,∴抽到女生的概率是1-=.故答案为:.【点睛】此题考查的是求概率问题,掌握抽到男生和抽到女生的概率之和等于1是解决此题的关键.16、<【分析】根据反比例函数图象增减性解答即可.【详解】∵反比例函数的图象在每一个象限内y随x的增大而增大∴图象上点与点,且0<<∴<故本题答案为:<.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键.17、【分析】连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,由三角函数定义即可得出答案.【详解】解:连接DE,如图所示:

在△ABC中,∠ABC=120°,BA=BC,

∴∠α=30°,

同理得:∠CDE=∠CED=30°=∠α.

又∵∠AEC=60°,

∴∠AED=∠AEC+∠CED=90°.

设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,

∴AD=a,

∴sin(α+β)==.

故答案为:.【点睛】此题考查解直角三角形、等边三角形的性质以及图形的变化规律,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.18、1.【分析】求出6名学生的总分后,再求出除甲同学之外的5人的总分,进而求出平均分即可.【详解】(70×6﹣45)÷(6﹣1)=1分,故答案为:1.【点睛】此题考查平均数的计算,掌握公式即可正确解答.三、解答题(共78分)19、(1);(2)详见解析;(3)2.0或者3.7【分析】(1)当x=2时,点C与点O重合,此时DE是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y=4时x的值即可;【详解】(1)当时,即是直径,可求得的面积为4.0,∴;(2)函数图象如图所示:(3)由图像可知,当时,或3.7【点睛】本题考查圆综合题,三角形的面积,函数图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.20、(1)见解析;(2)15【分析】(1)利用平行线性质及角平分线线定理得到∠DEB=∠DBE,再利用等腰三角形判定得到BD=DE,即得到答案.(2)利用相似的判定得到△ADE∽△ABC,再利用相似的性质得到,代入值即可得到答案.【详解】(1)证明:∵DE//BC,∴∠DEB=∠EBC∵BE平分∠ABC∴∠DBE=∠EBC∴∠DEB=∠DBE∴BD=DE(2)解:∵AB=10,AD=4∴BD=DE=6∵DE//BC∴△ADE∽△ABC∴∴∴BC=15【点睛】本题考查平行线性质、等腰三角形的判定以及相似三角形的判定、性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21、AB=2;(2)m=1.【分析】(1)令y=0求得抛物线与x轴的交点,从而求得两交点之间的距离即可;(2)用含m的式子表示出顶点坐标,然后代入一次函数的解析式即可求得m的值.【详解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函数y=x2+2mx+(m2﹣1),∴顶点坐标为(﹣2m,),即:(﹣2m,﹣1),∵图象的顶点在直线y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【点睛】本题考查了解二次函数的问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.22、(1)作图见解析;(2)(1)作图见解析;(2)cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=cm,故半径为:cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.23、(1)图见解析;B′的坐标为(﹣1,3);(2).【分析】(1)过点C作B′C⊥BC,根据网格特征使B′C=BC,作A′C⊥AC,使A′C=AC,连接A′B′,△A′B′C即为所求,根据B′位置得出B′坐标即可;(2)根据旋转的性质可得∠ACA′=90°,利用勾股定理可求出AC的长,利用弧长公式求出的长即可.【详解】(1)如图所示,△A′B′C即为所求;B′的坐标为(﹣1,3).(2)∵A(3,3),C(0,﹣1).∴AC==5,∵∠ACA′=90°,∴点A经过的路径的长为:=.【点睛】本题考查旋转的性质及弧长公式,正确得出旋转后的对应边和旋转角是解题关键.24、树高为米.【分析】延长交BD延长线于点,根据同一时刻,物体与影长成正比可得,根据AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的长,由B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论