高中数学课件(精选14篇)_第1页
高中数学课件(精选14篇)_第2页
高中数学课件(精选14篇)_第3页
高中数学课件(精选14篇)_第4页
高中数学课件(精选14篇)_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第52页共52页高中数学课件〔精选14篇〕篇1:高中数学抛物线课件教学目的1.抛物线的定义2.抛物线的四种标准方程形式及其对应焦点和准线教学重难点教学重点:1.抛物线的定义和焦点与准线2.抛物线的四种标准形式,以及p的意义。教学难点:抛物线的四种图形,标准方程的推导及其焦点坐标和准线方程。教学过程一、知识回忆:二次函数中抛物线的图象特征是什么?(平行于y轴,开口向上或者向下)假如抛物线不平行于y轴,那么就不能作为二次函数的图象来研究了,今天我们来打破研究中的限制,从一般意义上来研究抛物线。二、课堂新授:(讲解抛物线的作图方法)定义:平面内与一个定点F和一条定直线l的间隔相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。如图建立直角坐标系xOy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合。结合表格完成以下例题:1.抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程。2.抛物线的焦点坐标是F(0,-2),求它的标准方程。解:1.∵抛物线的方程是y2=6x,∴p=3∴焦点坐标是(,0),准线方程是x=-2.∵焦点在y轴的负半轴上,且,∴p=4∴所求的抛物线标准方程是x2=-8y。三、随堂练习:1.根据以下条件写出抛物线的标准方程:四、课堂小结:由于抛物线的标准方程有四种形式,且每一种形式都只含有一个参数p,因此只要给出确定的p的一个条件就可以求出抛物线的标准方称。当抛物线的焦点坐标或准线方程给定以后,它的标准方程就可以唯一确实定下来。五、课后作业:P119习题8.52、4[高中数学抛物线课件]篇2:高中数学的课件高中数学的课件数学集合教学设计【教学目的】(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步理解“属于”关系的意义(3)使学生初步理解有限集、无限集、空集的意义数学集合教学设计【重点难点】教学重点:集合的根本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描绘法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪数学集合教学设计【内容分析^p】1.集合是中学数学的一个重要的根本概念在小学数学中,就浸透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开场学习数学就离不开对逻辑知识的掌握和运用,根本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的根底把集合的初步知识与简易逻辑知识安排在高中数学的最开场,是因为在高中数学中,这些知识与其他内容有着亲密联络,它们是学习、掌握和使用数学语言的根底例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的`常用表示方法,包括列举法、描绘法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的根本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的根本概念集合是集合论中的原始的、不定义的概念在开场接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描绘性说明数学集合教学设计【教学过程】一、复习引入:1.简介数集的开展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一局部,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是一样的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:假如a是集合A的元素,就说a属于A,记作a∈A(2)不属于:假如a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、以下各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)假设x∈G,y∈G,那么x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,那么x=x+0*=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G数学集合教学设计【小结】1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法篇3:高中数学课件制作高中数学课件制作一、教材分析^p集合语言是现代数学的根本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最根本的集合语言去表示有关的数学对象,开展运用数学语言进展交流的才能.函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个根本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更结实一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着亲密的联络.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描绘客观世界变化规律的重要数学模型.二、学情分析^p1.学生的作业与试卷局部缺失,导致易错问题分析^p不全面.通过布置易错点分析^p的任务,让学生意识到保存资料的重要性.2.学生学根本功较扎实,学习态度较端正,有一定的自主学习才能.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.3.在研究例4时,对分类的情况研究的不全面.为了打破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.三、设计思路本节课新课中浸透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,老师没有把梳理好的知识展示给学生,而是让学生自己进展知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极考虑,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近开展区”发现问题、解决问题.通过自主分析^p、交流合作,从而进展有机建构,解决问题,改变学生模拟式的学习方式.在教学过程中,浸透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而打破难点.四、教学目的分析^p(一)知识与技能1.理解集合的含义与表示,理解集合间的根本关系,集合的根本运算.A:能从集合间的运算分析^p出集合的根本关系.B:对于分类讨论问题,能区分取交还是取并.2.理解函数的定义,掌握函数的根本性质,会运用函数的图象理解和研究函数的性质.A:会用定义证明函数的单调性、奇偶性.B:会分析^p函数的单调性、奇偶性、对称性的关系.(二)过程与方法1.通过学生自主知识梳理,理解自己学习的缺乏,明确知识的来龙去脉,把学习的内容网络化、系统化.2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联络,体会集合与函数的本质.(三)情感态度与价值观在学生自主整理知识构造的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的才能.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,浸透动静结合的思想,让学生养成理性思维的品质.五、重难点分析^p重点:掌握知识之间的联络,洞悉问题的考察点,能选择适宜的知识与方法解决问题.难点:含参问题的讨论,函数性质之间的关系.六.知识梳理(约10分钟)提出问题问题1:把本章的知识构造用框图形式表示出来.问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合详细实例说明集合的这些根本要求吗?问题3:类比两个数的关系,考虑两个集合之间的根本关系.类比两个数的运算,考虑两个集合之间的根本运算,交、并、补.问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?请结合详细实例分析^p,表示函数的三种方法,每一种方法的特点.问题5:分析^p研究函数的'方向,它们之间的联络.在前一次晚自习上,学生互相展示自己的结果,通过互相讨论,每组提供最正确的方案.在自己的原有方案的根底上进展补充与完善.学生答复以下问题要点预设如下:1.集合语言可以简洁准确表达数学内容.2.运用集合与对应进一步描绘了函数的概念,与初中的函数的定义比拟,突出了函数的本质函数是描绘变量之间依赖关系的重要数学模型.3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据详细情况选用.4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描绘函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进展复习,让复习进展的更有效.让学生体会到知识的横向联络与纵向联络.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.七、易错点分析^p(约3分钟)问题6:集合中的易错问题,函数中的易错问题?主要是作业、训练、考试中出现的问题?(任务提早布置,由课代表汇总,并且在教学课件中表达.老师不进展修改,呈现的是原始的)老师展示学和成果并进展点评.对于问题6主要由学生讨论分析^p,并答复,其他学生补充.这个过程尽量由学生来完成,老师可以适应的引导与点评.设计意图:让学生学会避开命题者制造的陷阱,通过不断的分析^p,让学生理解问题出现的根,充分暴露自己的思维,在交流与合作的过程中,改良自己的缺乏,加深对错误的认识.通过交流理解别人的错误,自己防止出现类似的错误.八、考察点分析^p(约5分钟)问题7:分析^p集合中的考察点,函数中的考察点.问题8:知识的横纵联络.学生答复以下问题要点预设如下:1.集合中元素的互异性.2.,那么集合A可以是空集.3.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题.4.函数的单调性与奇偶性的证明.5.作业与试卷中出现的问题.6.学生分析^p本章的考察点,主要分析^p考察的知识点、思想方法等方面.设计意图:让学生理解考察点,才能知道命题者的考察意图,才能选择适宜的知识与思想方法来解答.例如假如试题中出现集合,无论试题以什么形式出现,考察点根本是集合间的根本关系、集合的运算.九、典型问题分析^p例1:设集合(1)假设,务实数的值;(2)假设,求的值;(3)假设,求的值.老师点评,同时板书.(1)答案:或;(2)答案:或;(3)答案:.由学生分析^p问题的考察点,包括知识与数学思想.(预设有以下几个方面)从知识点来分析^p,这是集合问题.考察点主要为集合的表示方法、集合中元素的特性、集合间的根本关系、集合的运算等.学生在解第1个问时,可能漏掉特殊情况.第2、3问可能会遇到一定的障碍,可以给学生时间进展充分的考虑.设计意图:让学生体会到分析^p考察点的好处,养成解题之前分析^p考察点的习惯.能顺利的找到问题的打破口,为后续的解答扫清障碍.通过一题多问、一题多解、多题归一,让学生主动的形成发散思维,主动应用转化与化归的思想.例2:函数是定义在R上的奇函数,当时,求函数的解析式.变式:函数是偶函数老师对生答复进展点评.并板书.学生分析^p考察点、解题思路,假如不完善,其他学生补充.学生答复以下问题要点预设如下:1.考察点为函数的奇偶性与函数图象的关系.2.函数的奇偶性的定义.3.转化与化归的思想.法一:此题即求,函数的解析式,可先利用函数的奇偶性绘制函数的图象,把此题转化为二次函数的图象与解析式的问题.法二:本法更具有一般性,时,函数的解析式,要分析^p时的函数对应关系,即当一个数小于零时,函数值应当怎样计算.由于函数具有奇偶性,即一个数与它的相反数的函数值之间有关系,,所以可以研究的函数值.设计意图:学生在考虑的过程中,体会数形结合思想.函数的奇偶性与函数的图象的关系,可以根据奇偶性绘制函数图象,也可以通过函数的图象分析^p函数的奇偶性,两者是相辅相承的.体会转化与化归的思想,把要研究的转化为的.考察函数的单调性的证明,函数的奇偶性与单调性之间的关系,体会知识的纵向联络.体会转化与化归的思想、特殊与一般的数学思想,让学生体会到问题后面隐含的本质.例3:是偶函数,而且在上是减函数,判断在上是增函数还是减函数,并证明你的判断.变式1:函数为奇函数变式2:你能分析^p奇函数(偶函数)在对称区间上的单调性的关系吗?试从数形两个方面来分析^p.学生分析^p考察点、解题思路,假如不完善,其他学生补充.学生答复以下问题要点预设如下:1.考察点为函数的奇偶性与单调性的关系.2.函数的单调性的定义.3.数形结合、转化与化归的思想.法一:通过函数的图象分析^p.法二:把要研究的范围转化为的范围.设计意图:明确函数的性质是一个有机的整体,不是一个个知识点的简单罗列.同时体会知识的纵向联络与横向联络,在第二个方法中进一步感受转化与的思想.通过两个变式的研究过程,学生体会研究探究性问题的一般思路,即通过特殊情况分析^p结果,再对结果的正确性进展证明.例4:求在区间上的最大值和最小值.变式:在区间上的最大值是1,求的值.老师用几何画板演示,二次函数对称轴的变化对函数的最值的影响.答案:时,最大值是,最小值是;时,最大值是,最小值是;时,最大值是,最小值是;时,最大值是,最小值是.变式答案:或.学生通过直观的演示,考虑问题的考察点与解答策略.学生答复考察点分析^p(预设):1.二次函数的图象与性质.2.分类与整合.3.逆向思维.学生答复解题思路分析^p(预设):研究二次函数的对称轴方程与所给的区间的关系.设计意图:通过几何画板的动态性,给学生直观的感知,从而建立最近开展区,进而打破难点.通过对二次函数的研究,学生稳固了上位知识函数的图象与性质,充分体会数形结合的优势.学生在解答变式的过程中,体会逆向思维与正向思维的关系,体会函数与方程思想,感受到动静结合.十、课后小结1.知识网络2.知识的来龙去脉3.问题中表达的数学思想4.分析^p问题的根本思路学生总结,老师板书.设计意图:让学生把知识窜串,形成网络,能迅速而准确的选用知识来解答问题.十一、课后总结稳固所学,补充课上的缺乏.主要是本节课中没有涉及的问题,本节课中理解有困难的问题.1.是定义在R上的函数,设,.(1)试判断的奇偶性;(2)试判断的关系;(3)由此你猜测得出什么样的结论,并说明理由?2.设函数,,(1)讨论的奇偶性;(2)求的最小值.3.集合,,,是否存在实数,同时满足.4.将长度为20cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?十二、教学反思在复习课中,老师要充分调动学生学习的自主性,让学生独立制定出合适自己的知识构造、整理出自己在本章学习中出现的问题.在课堂上,学生通过交流与合作,体会解决问题成功的喜悦.从而养成良好的学习习惯、树立信心.感受知识的横向联络与纵向联络,洞悉知识的本质、问题的根,从而形成深化的印象,少出现或防止出现类似的问题.通过分析^p知识的来龙去脉,明确知识的用处.通过典型题分析^p,回忆主干知识,重要的数学思想,感受知识与数学思想的有机交融.篇4:高中数学课件奇偶性高中数学课件奇偶性高中数学课件奇偶性教学目的:1、在理论活动中认识奇数和偶数,理解奇偶性的规律。2、探究并掌握数的奇偶性,并能应用数的奇偶性分析^p和解释生活中一些简单问题。3、通过本次活动,让学生经历猜测、实验、验证的过程,结合学习内容,对学生进展思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。教学重点:探究并理解数的奇偶性教学难点:能应用数的奇偶性分析^p和解释生活中一些简单问题教学过程:一、游戏导入,感受奇偶性1、游戏:换座位首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。〔游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位〕2、讨论:为什么会出现这种情况呢?学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。〔此时学生议论纷纷,正是引出偶数、奇数的最正确时机〕3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的倍数,这样的数就叫做奇数。学生互相举例说说怎样的.数是奇数,怎样的数是偶数。二、猜测验证,认识奇偶性1、设置悬念、激发思维如今我们继续来考虑六组人数:5人、6人、7人、8人、9人、10人,那么猜猜那些组合起来可以刚好换完?那些不能?2、学生猜测、操作验证学生独立猜测,小组内汇报交流,然后统一意见进展验证〔要求:验证时多项选择择几组进展证明〕。汇报成果:奇数﹢奇数=偶数奇数-奇数=偶数奇数+奇数+……+奇数=奇数奇数个偶数+偶数=偶数偶数-偶数=偶数奇数+奇数+……+奇数=偶数偶数个奇数+偶数=奇数奇数-偶数=奇数偶数+偶数+……+偶数=偶数你能举几个例子说明一下吗?〔学生的举例可以引导从正反两个角度进展〕3、深化请同学们闭上眼睛,想一想:2+4+6+8+……+98+100这么多偶数相加的和是偶数还是奇数?为什么?三、理论操作、应用奇偶性我们已经知道了奇偶数的一些特性,如今要用这些特性解决我们身边经常发生的问题。1、一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动100次?105次?学生动手操作,发现规律:奇数次朝下,偶数次朝上。2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过假设干次翻转,使得3个杯子全部杯口朝下?你手上只有一个杯子怎么办?〔学生:小组合作〕学生开场动手操作。反响:有一小局部学生说能,但是上台展示,要么违背规那么,要么无法进展下去。引导感受:假如我们分析^p一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。学生动手操作,尝试发现交流:一开场杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。学生再次操作,感受过程,体验结论。3、游戏。规那么如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?学生跃跃欲试……假如继续玩下去有中奖的可能吗?谁不想参加呢?为什么?生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。是呀,这是老师在街上看到的一个骗局,他就是利用了数的奇偶性专门骗小孩子受骗,如今你有什么想法?学生自由说。四、课堂小结,课后延伸。1、说说我们这节课探究了什么?你发现了什么?2、那假如是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过假设干次翻转,使得4个杯子全部杯口朝下?最少几次?请同学们课后去尝试探究这个命题,可以独立考虑,也可以找人合作。篇5:职业高中数学教学课件一、指导思想准确把握《教学大纲》和《考试大纲》的各项根本要求,立足于根底知识和根本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改良教法,指导学法。数学目的要求1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。2、理解角的概念的推广和三角函数的定义,掌握根本的三角函数公式和三角函数巅峰性质、图像,理解三角函数的周期性3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的和。4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。5、掌握空间几何直线、平面之间的位置关系及其断定方法。6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。二、教学建议1、深化钻研教材职业高中数学教学方案职业高中数学教学方案。以教材为核心,深化研究教材中章节知识的内外构造,纯熟掌握知识和逻辑体系,细致领悟教材改革的精华,逐步明确教材教学形式,内容和教学目的的影响。2、准确吧握新大纲。新大纲修改了局部内容的教学要求层次,把握新大纲对知识点的根本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上要重视数学应用;重视教学思想方法的参透。3、树立以学生为主体的教育观念。学生的开展是课程施行的出发点和归宿,老师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的气氛。4、发挥教材的多种教学功能。用好章头图,激发学生学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料5、加强课堂研究,科学设计教学方法职业高中数学教学方案工作方案。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和开展的过程。根据材料个章节的重难点制定教学专题,积累教学经历。6、落实课外活动内容,组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。三、教学进度1-4复习初中知识和集合1-3数列4-6平面向量5充要条件6-7不等式7-9直线的方程8-10函数10期中考试11期中考试11-12圆的方程12-14指数函数与对数函数13-15立体几何15-18三角函数16-18概率与统计初步19-20期末、总复习、考试9-20总复习与期末考篇6:职业高中数学教学课件本学期我担任了建30班数学教学工作,按照我校《学校工作方案要点》的精神,以就业为导向,以才能为核心,以技能为特色,培养高品位的劳动者和就业岗位的创造者。结合我校外学生的实际情况,现就制定教学工作方案如下:一、指导思想贯彻职业教育工作会议精神,以“学生会做”为课堂教学改革目的,积极构建质量兴校、科研兴校、人才强校的平台,树立新的人生观、学生观、教育观和开展观,培养高品位的劳动者、就业岗位的`创造者,努力进步学校教学程度。二、教学目的〔一〕情感目的1.通过分析^p问题的方法的教学,解决问题的多渠道,培养学生学习数学的兴趣;2.给学生提供生活背景,使学生体验到数学就在身边,培养学生学数学、用数学的意识。〔二〕才能目的1、培养学生的记忆才能职业高中数学教学方案职业高中数学教学方案。在对二次曲线、复数及其应用的学习中,培养学生的记忆才能、做到记忆的准确、持久。2、通过概念、公式的教学,解释数学规律,培养学生对数学本质问题及详细数据的记忆。3、培养学生的运算才能。通过复数的代数形式和三角形式的互换训练,培养学生的运算才能。4、培养学生的思维才能。通过算法与程序框图的应用,培养学生思维周密性、逻辑性,通过例题的不同的解法,培养学生思维的灵敏性,掌握转化的数学思想方法和数形结合的方法职业高中数学教学方案工作方案。(三)知识目的1、理解椭圆、双曲线、抛物线的定义,掌握椭圆、双曲线、抛物线的标准方程和性质并会应用他们的性质解决有关问题。2、掌握任意角的三角函数、三角函数公式、三角函数图像及性质、正、余弦定理及应用;3、理解算法与程序框图。三、教学措施1、教学中要将传授知识与培养才能相结合,充分调动学生学习数学的积极性,培养学生概括才能,让学生掌握数学的根本方法和根本技能。2、认真备课、修改作业、加强对学生的辅导。3、利用业余时间加强学习,进步业务程度。4、虚心向同行学习,听课,取长补短,进步教学程度,尽快适应职业教育篇7:职业高中数学教学课件数学是学习专业课和进步文化素养的根底科学。职业高中数学教学的目的是:一方面为学生学习专业课提供必要的数学工具;另一方面是为进步学生素质效劳。一、课前教案一般是开学前的较长时间内,它与制定教学方案完全不同。它是对教学方案的深化与拓展,它要求老师做到:1、认真研究教学大纲,理解全学年的教学内容,前学期与后学期教材的衔接,明确目的和重点,疏通各章节知识,理解各部门内容的来龙去脉。2、理解所教专业班需要数学为其提供哪些根底知识与工具,根据专业的特点和需要,来增加补充或调节某些章节的顺序,充分为专业课效劳。3、根据教学规律,认真研究学生学习情况,根据内外因原理、矛盾原理、量变与质变关系,感性认识与理性认识等关系去指导备课职业高中数学教学方案职业高中数学教学方案。注意这些原理与数学学科的关系,进而把它用到数学教学中,使唯物辩证法原理浸透到学年的教学中。老师经过大量的学习与研究,写好课前教案,就能使本学年的教学心中有数,有的放矢。二、课上教案一般在上课前进展,它要老师:1、以教科书为根据,根据教材的科学性、思维性、整体性,明确本节内容与其它章节的联络,分清知识的本末主次与因果关系。2、教学目的要明确,让学生掌握哪些根底知识,根本技能与技巧,培养哪些才能,培养运用哪些唯物辩证法根本原理。3、要理解本节内容的学习学生要复习哪些旧知识,理解所教内容在今后的学习和理论中的应用,同时要理解这节内容与所学专业课之间的联络。4、对教学重点要抓得准,讲得透,因为只有这样才能“脉络”明显,结论明确。要充分估计难点,备课时要考虑如何运用直观、详细抽象分散难点,各个击破。应用“去粗取精,去伪存真,由此及彼,由表及里”的原理,使学认识由感性上升到理性,进而打破难点,扫清障碍。5、根据教材内容与特点,科学地确立课堂类型与教学方法。认真分析^p范例,不能只停留在会做的程度上,对补讲的例题也要作妥善安排。经常要进展自我训练。每节习题,每章复习题都要熟悉它的解法,理解它的难易程度,力求把解题要领、规律与简捷途径告诉给学生。6、注重他教与多媒体教学,适当深化浅出地浸透现代教学观点。7、要经常写复案,即在写好教案的根底上,课前再度回忆,估计课堂各环节的时间,板书所占地方的大小,可适当修改补充,力求完善职业高中数学教学方案工作方案。三、课后教案一般是在一节课后或一章后进展。它要求老师在课后认真总结经历教训,成效得失,把心得体会写下来,写好课后教案好处有:1、是老师深化钻研教材的好形式。老师钻研教材主要靠备课,课备得好坏主要靠课堂教学理论来检验。通过写课后教案检查自己对教材的学习与研究情况,教学目的是否明确,教学重点是否突出教材的关键点是否抓得准确。写课后教案本质上是更深钻研教材、理解教材。2、写好课后教案有助于改良教学方法,进步教学艺术程度。教完每节课后,检查一下教学效果,回忆一下教学方法是否恰当,是否有启发性,是否符合学生的详细情况。通过分析^p,把详细的教学理论进步到教学理论加以认识。从中找出规律,改良教学方法,不断进步授课程度。3、写好课后教案是积累教学经历的好方法。科学家丰富渊博的知识靠一点一滴长期积累起来,所有成功的优秀老师也特别注重教学经历的长期积累,假如边教边忘,教学时间再长也最多不过是简单的重复,不会有进步。通过多年的教学讨论与教学理论,我认为备课中如注重了这三种教案,就可以进步课堂教学效果,进而使学生在知识才能方面获得大面积的丰收练。每节习题,每章复习题都要熟悉它的解法,理解它的难易程度,力求把解题。篇8:高中数学德育教学课件教学目的:1、把图形进展分类整理,并认识图形的类别特征。2、动手理论,体会平行四边形和三角形的性质。3、通过直观操作来感受和体验各种图形的性质。教学重点:把图形进展分类整理,并认识图形的类别特征。教学难点:动手理论,体会平行四边形和三角形的性质。教学过程:一、创设情境,谈话引入师:同学们,我们已经认识了一些图形,如今一齐来回忆一下,都有哪些图形。(老师让学生说说桌面上的图形)二、探究新知,小组学习师:这些图形如今准备要搬家了,我们可以根据图形的特征帮助它们分类搬进这两间屋子里吗?(小组讨论,并说说理由)。生:按立体图形和平面图形来分。生:按图形是否有角来分。……师:你们都说的很好,看看我们的好朋友淘气是怎样分的。他也和我们一样把立体形和平面图形分开。但这时平面图形有话要说了,嗯,我们听听他们说些什么。课件说:我们的屋子里有两间房子,你们可以把我们进展分类看看住哪间房子吗?师:既然平面图形这样说了,我们的同学可以帮帮它把桌面上的平面图形再次分类吗?生:按图形是否线段围成来分。生:按图形是否圆来分。师:同学们真厉害,在这么短时间就帮平面图形解决这么多难题。课件说:aaa等等,杨老师,我还有一个问题说同学们帮帮我啊!师:啊!你还有问题呀,同学们,帮不帮他好呢?生:帮师:那你快说呀?课件:你们已经帮我们分了房间,但是要两个图形睡一张床呀!你们可以再帮我们分类吗?师:既然这样我们就帮帮它吧?翻开书本第22页,用铅毛把这四个图形进展分类画在圈里。生:我是按它是否直角来分。[德育浸透:让学生自主进展分类,学生按各图形的特征来分类,然后总结出每类图形的特点,有利于培养学生的思维才能,对于学生在学习中容易犯错误的地方,采用有趣的方式引起学生的注意,不仅激发了学生的兴趣,而且给学生留下深化的印象。通过提供一组感性学习材料,适当进展启发,使学生的思维有了一定的指向和集中。学生凭着对学习材料的直接反响作出了大胆的设想。防止了学生盲目的猜测,同时又唤起学生主动参与学习,探究知识的欲望。]三、联络生活,探究图形特点师:你们真棒!在短时间内已经把学过的图形进展分类。看看这幅图是什么来的?是什么图形?生:是桥。三角形师:再看看这一幅电动铁门是什么图形。生:平行四边形。师:其实在我们生活中很多运用了三角形和平行四边形。谁可以说说你在哪里见过呢?(小组讨论)生:窗口是平行四边形生:红领巾是三角形。师:哪三角形和平行四边形你们喜欢哪一个呢?利用桌面上的小棒拼出你喜欢的图形。(找一个拼三角形的学生)师:这位同学是拼成三角形的,你可以把这三角形的边拉一拉吗?你发现了什么?生:我发现这个图形具有稳定性。师:还有没有同学拼其它图形的。(找一个拼四边形的)师:你可以把这个平行四边形的对角拉一拉吗?你发现了什么?生:一拉就变形了。所以四边形具有不稳定性。师:噢,原来是这样子的.,那老师给多一条棒给你可以把这个平行四边形固定起来,让它不变形吗?说说理由。生:我在中间多加一条棒它就不会动了。因为形成三角形就具有稳定性。师:经过同学们拼出来的图形,老师终于知道了三角形的稳定性和平行四边形的不稳定性在我们生活中有着广泛的应用。看看第三题这幅图,第一幅女孩子就叫他不要坐下去,第二幅图又叫他坐,是不是女孩在玩乱男孩子呢?生:不是,因为……[德育浸透:在这一探究发现的过程中,学生通过自己动手和动脑,获得了认识。并经过启发、讨论和独立考虑、学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识程度、理论才能和创新意识从中得到了培养。新的认识、新的结论不能盲目、划率地断言,必需要有充分的科学根据。教者设计达一教学环节,既浸透了科学探究的一般方法、更重要的是培养学生一丝不苟、实事求是的严谨科学态度。]四、课堂小结今天的课已经上完了,上这节课上得开心吗?哪开心我就要问一下你们,你觉得这节课掌握了什么知识呢?你觉得哪一个小组表现最好,好在哪里呀!今天我们学习了按图形的特征进展分类,希望同学们以后遇到这些图形都可以找出它的特点。最后谢谢各位同学帮助图形搬了一间舒适的家。篇9:高中数学必修三模块综合课件高中数学必修三模块综合课件一、选择题:〔每题只有一个正确选项。每题5分,共50分〕1、10名工人某天消费同一零件,消费的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,那么有()A.a>b>cB.b>c>aC.c>a>bD.c>b>a2、一枚质地均匀的硬币,假如连续抛掷1000次,那么第999次出现正面朝上的概率是〔〕A.B.C.D.3、对总数为N的一批零件抽取一个容量为30的样本,假设每个零件被抽到的概率为0.25,那么N的值为〔A〕120(B)200(C)150(D)1004、同时转动如下图的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对〔x,y〕,那么所有数对〔x,y〕中满足xy=4的概率为()A.B.C.D.5、右图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是〔〕A..i100C.i>50D.i篇10:高中数学优秀说课课件一。教材分析^p1.本节课内容在整个教材中的地位和作用概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位表达在它的思想的根底性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下根底;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的才能。2.教学目的定位根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目的。〔1〕根底知识与才能目的:理解二次函数的图像中a、b、c、k、h的作用,能纯熟地对二次函数的一般式进展配方,会对图像进展平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的才能,进步运算和作图才能;〔2〕过程和方法:让学生经历作图、观察、比拟、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探究,又能合作探究的良好学习习惯;〔3〕情感、态度和价值观:在教学中浸透美的教育,浸透数形结合的思想,让学生在数学活动中学会与人相处,感受探究与创造,体验成功的喜悦。3.教学重难点重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析^p过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。二。教法学法分析^p数学是开展学生思维、培养学生良好意志品质和美妙情感的重要学科,在教学中,我们不仅要使学生获得知识、进步解题才能,还要让学生在老师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地表达在课堂教学中“老师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕老师组织——启发引导,学生探究——交流发现,组织开展教学活动。为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;④训练小结——深化稳固;⑤思维拓展——进步才能。这五个环节环环相扣、层层深化,注重关注整个过程和全体学生,充分调动了学生的参与性。三。教学过程分析^p1.创设情景—引入新课教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比拟这两个图像的一样点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。由浅入深,下面让学生画y=2x?,y=2〔x+1〕?与y=2〔x+1〕?+3的图像并寻找它们的联络,再让学生与多媒体课件展示出的图像进展比照,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以进步学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。2.探究交流—发现规律从特别到一般是我们发现问题、寻求规律、提醒本质最常用的方法之一。让学生做出y=2x?与y=2x?+4x-1的图像,再与课件上的图像比照并表达二者之间的位置关系,得出结论:假设二次函数的解析式为y=ax?+bx+c,先将其化成y=a〔x+h〕?+k的形式,从而判断出y=ax?+bx+c的图像是如何由y=ax?变换得到的。在课本第42页例1〔1〕中要提醒学生注意,在含有参数的解析式y=a〔x+h〕?+k中,顶点坐标应是〔-h,k〕,而不是〔h,k〕。所以,例1〔1〕中二次函数f〔x〕顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4〔这里容易出错〕。例1〔2〕中h、k的值是的,只需要确定a的值就可以了。3.启发引导—形成结论前面的练习和例题,根本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进展总结,得出y=x?到y=ax?,y=ax?到y=a〔x+h〕?+k,y=ax?到y=ax?+bx+c〔其中,a均不为0〕的图像变化过程,即a>0开口向上,a篇11:高中数学优秀说课课件一、学习目的1.知识目的:研究曲线的切线,从几何学的角度理解导数概念的背景,明确瞬时变化率就是导数,掌握求曲线切线斜率的一般方法。2.才能目的:通过嫦娥一号绕月探测卫星变轨瞬间的瞬时速度和运动的方向为背景,从极限入手,培养学生的创新意识和数形转化才能。3.情感目的:通过运动的观点,体会曲线切线的内涵,挖掘数形关系,激发学生学习数学的热情。二、教学重点曲线切线的概念形成,导数公式的理解和运用。三、教学难点理解曲线切线的形成是通过逼近的方法得出的。引导学生在平均变化率的根底上探求瞬时变化率。四、教学过程1.新课引入,创设情景①〔大屏幕显示〕嫦娥一号绕月探测卫星运行轨迹以及四次变轨的全过程。②讨论问题:卫星在每次变轨的瞬间不仅有瞬时速度,而且要研究它运动的方向。引出本节课主要研究的课题——曲线的切线。2.概念形成,提出问题①〔大屏幕显示〕分析^p卫星在变轨瞬间与变轨前的位置关系,引出曲线的割线。②由运动的观点、极限的思想,归纳出曲线切线的概念。以及求曲线切线斜率的一种方法。3.转换角度,分析^p问题①引入增量的概念,在曲线C上取P〔x0、y0〕及邻近的一点Q〔x0+△x,y0+△y〕,过P、Q两点作割线,分别过P、Q作y轴,x轴的垂线相交于点M,设割线PQ的倾斜角β,.②割线斜率用增量表示的形式不变。〔大屏幕显示〕改变P的邻近点Q的位置、曲线的类型、倾斜角的性质,发现tanβ表示的形式始终不变。左、右邻近点的讨论,为下面说明极限的存在做准备。4.归纳总结,解决问题①〔大屏幕显示〕由于△x可正可负,但△x≠0,研究△x无限趋近于0,用极限的观点导出曲线切线的斜率。②讨论问题:引导学生将这一运动过程转化为已学的代数问题。k==点评公式,重点强调平均变化率和瞬时变化率之间的关系,提出导数。同时引导学生归纳出求曲线切线斜率的一般方法和步骤5.例题剖析,深化问题例:曲线的方程f〔x〕=x2+1求此曲线在点P〔1,2〕处的切线的方程6.学生演板,落实问题①曲线y=2x2上一点A〔1,2〕,求〔1〕点A处的切线的斜率;〔2〕点A处的切线的方程。②求曲线y=x2+1在点P〔-2,5〕处的切线方程。7.课堂小结8.作业P125第6、7、8、9题篇12:高中数学《三角函数的诱导公式》课件设计意图标题的后给出,让学生在经历整个探究过程后,还回味在探究,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.(六)概括升华三角函数的诱导公式口诀:即“奇变偶不变,符号看象限”.设计意图简便记忆公式.(七)练习强化求以下三角函数的值:(1)sin(-1000);(2)cos(-20400).设计意图本练习的设置重点表达一题多解,让学生不仅学会灵敏运用应用三角函数的诱导公式,还能养成灵敏处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对详细负角而言的.学生练习化简:(例题)设计意图重点加强对三角函数的诱导公式的综合应用.(八)小结1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.2.体会数形结合、对称、化归的思想.3.“学会”学习的习惯.(九)作业1.课本P-27,第1,2,3小题;2.附加课外题略.设计意图加强学生对三角函数的诱导公式的记忆及灵敏应用,附加题的设置有利于有才能的同学“更上一楼”.(十)板书设计:(略)篇13:高中数学怎么学课前预习一个老生常谈的话题,也是进步学习方法必须的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正可以做到课前预习的能有几人,课前预习可以使我们提早理解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而可以很快的吸收新知识。有了不会的知识,就要有必须“灭”了他的决心!记笔记这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华局部,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头嘛,二来可以方便我

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论