研究每个人的单一核甘酸多型性(SNP)的差异课件_第1页
研究每个人的单一核甘酸多型性(SNP)的差异课件_第2页
研究每个人的单一核甘酸多型性(SNP)的差异课件_第3页
研究每个人的单一核甘酸多型性(SNP)的差异课件_第4页
研究每个人的单一核甘酸多型性(SNP)的差异课件_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ApplicationofSupportVectorMachinetodetectanassociationbetweenadiseaseortraitandmultipleSNPvariationsAuthor:GeneKim,MyungHoKimAdvisor:Dr.HsuGraduate:Ching-WenHongApplicationofSupportVector1Outline1.Motivation2.Objective3.What’sSNP(singlenucleotidepolymorphism)4.HowtofindSNPvariations5.AreviewofSupportVectorMachine6.ArepresentationofmultipleSNPvariationsasavector7.Themarks

8.InseparableCase9.Testresultswithclinicaldata10.PersonalopinionOutline1.Motivation2Motivation研究每個人的「單一核甘酸多型性」(SNP)的差異,可以幫助了解致病基因,甚至預測藥物對個人是否具有療效,進一步設計量身訂做藥物,對新藥的開發有極大的影響。SNP的研究是後基因時代生技產業發展的主要趨勢。Motivation研究每個人的「單一核甘酸多型性」(SNP3ObjectiveWecanpresentamethodofdetectingwhetherthereisanassociationbetweenmultipleSNPvariationsandatraitordisease.ThemethodexploitstheSupportVectorMachine(SVM)whichhasbeenattractinglotsofattentionsrecently.ObjectiveWecanpresentameth4What’sSNP何謂SNP(單一核甘酸多型性)雖然同種生物其染色體差異極小,但平均1000個鹼基對(basepair)就有一個發生突變,這些變異稱為SNP,是造成每個人對藥物的敏感性不同、血型不同、身高等等的原因。此外,SNP也和癌症、心血管疾病、自體免疫等等疾病有關。目前國內賽亞基因和台大醫院合作,正從事C型肝炎SNP研究,試圖找出病患的SNP,以預測藥物是否對病人有效。What’sSNP何謂SNP(單一核甘酸多型性)5What’sSNP

AgeneticmarkerisM1,M2,…intheDNAThedifferentvariantsofDNAthatdifferentpeoplehaveatthemarkerarealleles,denotedby1,2,3..,Thenumberofallelespermarkerissmall:typicallylessthanten(forcalledmicrosatellitemarker)orexactlytwo(forcalledSNPs).What’sSNPAgeneticmarkeris6HowtofindSNPvariationsTheproblemofdeterminingwhetherasetofSNPvariationcauseaspecificdiseaseortraitcouldbeformulatedasfollows.Foragivendiseaseortrait,1.ForeachsetofSNPvariations,finditsrepresentationasavectorinaEuclideanspace.(haplotypedata,clinicaldata,….wewilldiscussthisinthepage9)2.GetasystematicwayofdistinguishingSNPgenotypeofnormalpeoplefromonesofpeoplewiththediseaseortrait.WewillusetheSupportVectorMachine(SVM)toseparateSNPvectorsintotwogroups(normal,sick).HowtofindSNPvariationsThe7AreviewofSupportVectorMachineWhatisaSVM?afamilyoflearningalgorithmforclassificationofobjectsintotwoclasses.Input:atrainingset{(x1,y1),…,(xl,yl)}ofobjectxiEŔ(n-dimvectorspace)andtheirknownclassesyiE{-1,+1}.Output:aclassifierf:Ŕ→{-1,+1}.whichpredictstheclassf(x)forany(new)objectxEŔAreviewofSupportVectorM8AreviewofSupportVectorMachine(1).LinearSVMforseparabletrainingsets:atrainingsetS={(x1,y1),…,(xl,yl)},xiEŔ,yiE{-1,+1}.AreviewofSupportVectorM9AreviewofSupportVectorMachineTheoptimalhyperplaneisdefinedbythepair(w,b).SolvethelinearprogramproblemMin½║w║²

st.yi(xi·w+b)-1≥0,i=1,…,lThisisaclassquadratic(convex)programAreviewofSupportVectorM10AreviewofSupportVectorMachine(2).LinearSVMfornon-separabletrainingsetsSolvethelinearprogramproblemMin½║w║²+C(∑εi),cisaextremelargevalueS.t.yi(xi·w+b)-1+εi

≥0,εi

≥0,0≤αi≤c,i=1,…,lAreviewofSupportVectorM11ArepresentationofmultipleSNPvariationsasavector

SchemeGiveneachdiseaseortrait,andacollectionofSNPdatawhichdependingongenotypeinaconsistentway.(haplotype,clinicaldata):7step1.Assumethatthereisnoenvironmentalfactor.2.SNPlocationsareassumedtobeknowforthediseaseortrait.3.AssumethereisareferenceSNPdata.(goodhealthrecords)4.Bygivingscoresbasedondifferencefromthereferencedata,assignavectortoeachSNPdata.ArepresentationofmultipleS12ArepresentationofmultipleSNPvariationsasavectorThedimensionofvectoristhenumberofSNPstotherelateddiseaseortrait.5.Atrainingsetischosenforthediseaseortrait,inotherwords,SNPgenotypedataofnormalandsickpopulation.6.ByusingStep4,computetheSNPvectorsofthetrainingdataset﹛(xi,yi)﹜,xiisaSNPdata,yi=1(sick)or-1(normal),7.UsetheSVMtogetahyperplanedividingintotwogroups(sick,normal)ArepresentationofmultipleS13Theremarks1.ThereferencedatacanbebuiltbycollectingSNPgenotypesfromthehealthynormalpopulation.2.Thehyperplaneobatinedcanbeconsideredasacriterion,and,givenanewdataset,itcanbeusedfortestingwhetherthepersonofthedataissusceptibletothediseaseortrait.3.RepresentationofanobjectasavectormightbecriticalformakingusetheSVM.Howtomakedomainknowledgecontainedinvectorrepresentationsisoneofthemajorissues.4.Theideaofdifferencescoringcouldbeappliedtootherdatasets(visualdatasuchasX-rayorMRIimage,…),inparticular,tohaplotypedataandtofindoutalinkageamongSNPtothediseaseortrait.5.OnceagroupofSNPpatternsareidentified,itcancomputecontributionscoreofeachofthoseSNPtothediseaseortrait.Theremarks1.Thereferenceda14InseparableCaseFortheinseparablecase,theiterateduseofSVMenablesustodivideacollectionoflabelledofvectorsintoseveralclusteringgroups.1.Setathresholdvalue.Say,80%.2.UseSVMtoseparateacollectionoflabelledofvectorsintotwogroupsA,B.3.Checkifthegroupscontainmorethan80%ofeither1or-1labeledvectors.SupposeAisnotsuchone.ThenuseSVMtoAagaintotwosubgroups.4.Repeatthisprocedureuntileachsubgrouphasamajorityofmorethan80%.5.Foreachsubgroup,figureoutarange.

InseparableCaseFortheinsepa15TestresultswithclinicaldataTheclinicaldataisacardio-patientrecordsdataset:Height,age,sex,weight,etnicbackground,medicalhistory,birthplace,bloodpressure(systolicanddiastolic),Liqidmeasurementsetcarenumericalizedand+1:apatientwithheartattack,strokeorheartfailure,otherwise-1WeusedThorstenJoachims’implementationofSVM.Testresultswithclinicaldat16PersonalopinionApplicationofSVMiseffective,Butitisdifficulttosolvenonlinearproblem.Howtomakedomainknowledgecontainedinvectorrepresentationsisoneofthemajorissues.

17PersonalopinionApplicationofApplicationofSupportVectorMachinetodetectanassociationbetweenadiseaseortraitandmultipleSNPvariationsAuthor:GeneKim,MyungHoKimAdvisor:Dr.HsuGraduate:Ching-WenHongApplicationofSupportVector18Outline1.Motivation2.Objective3.What’sSNP(singlenucleotidepolymorphism)4.HowtofindSNPvariations5.AreviewofSupportVectorMachine6.ArepresentationofmultipleSNPvariationsasavector7.Themarks

8.InseparableCase9.Testresultswithclinicaldata10.PersonalopinionOutline1.Motivation19Motivation研究每個人的「單一核甘酸多型性」(SNP)的差異,可以幫助了解致病基因,甚至預測藥物對個人是否具有療效,進一步設計量身訂做藥物,對新藥的開發有極大的影響。SNP的研究是後基因時代生技產業發展的主要趨勢。Motivation研究每個人的「單一核甘酸多型性」(SNP20ObjectiveWecanpresentamethodofdetectingwhetherthereisanassociationbetweenmultipleSNPvariationsandatraitordisease.ThemethodexploitstheSupportVectorMachine(SVM)whichhasbeenattractinglotsofattentionsrecently.ObjectiveWecanpresentameth21What’sSNP何謂SNP(單一核甘酸多型性)雖然同種生物其染色體差異極小,但平均1000個鹼基對(basepair)就有一個發生突變,這些變異稱為SNP,是造成每個人對藥物的敏感性不同、血型不同、身高等等的原因。此外,SNP也和癌症、心血管疾病、自體免疫等等疾病有關。目前國內賽亞基因和台大醫院合作,正從事C型肝炎SNP研究,試圖找出病患的SNP,以預測藥物是否對病人有效。What’sSNP何謂SNP(單一核甘酸多型性)22What’sSNP

AgeneticmarkerisM1,M2,…intheDNAThedifferentvariantsofDNAthatdifferentpeoplehaveatthemarkerarealleles,denotedby1,2,3..,Thenumberofallelespermarkerissmall:typicallylessthanten(forcalledmicrosatellitemarker)orexactlytwo(forcalledSNPs).What’sSNPAgeneticmarkeris23HowtofindSNPvariationsTheproblemofdeterminingwhetherasetofSNPvariationcauseaspecificdiseaseortraitcouldbeformulatedasfollows.Foragivendiseaseortrait,1.ForeachsetofSNPvariations,finditsrepresentationasavectorinaEuclideanspace.(haplotypedata,clinicaldata,….wewilldiscussthisinthepage9)2.GetasystematicwayofdistinguishingSNPgenotypeofnormalpeoplefromonesofpeoplewiththediseaseortrait.WewillusetheSupportVectorMachine(SVM)toseparateSNPvectorsintotwogroups(normal,sick).HowtofindSNPvariationsThe24AreviewofSupportVectorMachineWhatisaSVM?afamilyoflearningalgorithmforclassificationofobjectsintotwoclasses.Input:atrainingset{(x1,y1),…,(xl,yl)}ofobjectxiEŔ(n-dimvectorspace)andtheirknownclassesyiE{-1,+1}.Output:aclassifierf:Ŕ→{-1,+1}.whichpredictstheclassf(x)forany(new)objectxEŔAreviewofSupportVectorM25AreviewofSupportVectorMachine(1).LinearSVMforseparabletrainingsets:atrainingsetS={(x1,y1),…,(xl,yl)},xiEŔ,yiE{-1,+1}.AreviewofSupportVectorM26AreviewofSupportVectorMachineTheoptimalhyperplaneisdefinedbythepair(w,b).SolvethelinearprogramproblemMin½║w║²

st.yi(xi·w+b)-1≥0,i=1,…,lThisisaclassquadratic(convex)programAreviewofSupportVectorM27AreviewofSupportVectorMachine(2).LinearSVMfornon-separabletrainingsetsSolvethelinearprogramproblemMin½║w║²+C(∑εi),cisaextremelargevalueS.t.yi(xi·w+b)-1+εi

≥0,εi

≥0,0≤αi≤c,i=1,…,lAreviewofSupportVectorM28ArepresentationofmultipleSNPvariationsasavector

SchemeGiveneachdiseaseortrait,andacollectionofSNPdatawhichdependingongenotypeinaconsistentway.(haplotype,clinicaldata):7step1.Assumethatthereisnoenvironmentalfactor.2.SNPlocationsareassumedtobeknowforthediseaseortrait.3.AssumethereisareferenceSNPdata.(goodhealthrecords)4.Bygivingscoresbasedondifferencefromthereferencedata,assignavectortoeachSNPdata.ArepresentationofmultipleS29ArepresentationofmultipleSNPvariationsasavectorThedimensionofvectoristhenumberofSNPstotherelateddiseaseortrait.5.Atrainingsetischosenforthediseaseortrait,inotherwords,SNPgenotypedataofnormalandsickpopulation.6.ByusingStep4,computetheSNPvectorsofthetrainingdataset﹛(xi,yi)﹜,xiisaSNPdata,yi=1(sick)or-1(normal),7.UsetheSVMtogetahyperplanedividingintotwogroups(sick,normal)ArepresentationofmultipleS30Theremarks1.ThereferencedatacanbebuiltbycollectingSNPgenotypesfromthehealthynormalpopulation.2.Thehyperplaneobatinedcanbeconsideredasacriterion,and,givenanewdataset,itcanbeusedfortestingwhetherthepersonofthedataissusceptibletothediseaseortrait.3.RepresentationofanobjectasavectormightbecriticalformakingusetheSVM.Howtomakedomainknowledgecontainedinvectorrepresentationsisoneofthemajorissues.4.Theideaofdifferencescoringcouldbeappliedtootherdatasets(visualdatasuchasX-rayorMRIimage,…),inparticular,tohaplotypedataandtofindoutalinkageamongSNPtothediseaseortrait.5.OnceagroupofSNPpatternsareidentified,itcancomputecontributionscoreofeachofthoseSNPto

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论