版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
序贯模块法序贯模块法——化工系统模拟计算方法。序贯法的基本问题是迭代变量的选择、计算顺序的确定、修正切断流股初始猜算值和选代方法。要点:1)序贯模块法——直接选代,加权直接送代,严格Wegstein法,简化Wegstein法,Newton法,一维搜索。2)序贯模块法的选代层次;系统的自由度;迭代格式;收敛准则,算法框图;算法的几何意义,线性收敛,平方收敛。3)不同的加速收敛方法;各种收敛方法之间的比较。4)序贯模块法解设计问题;自由变量(过程参数);收敛方法;序贯模块法结构分析的切断准则。5)数学方法应用于解模拟问题、设计问题。12/25/20221第四章序贯模块法序贯模块法序贯模块法——化工系统模拟计算方法。序贯法的基本问1序贯模块法迭代层次与系统自由度经典序贯模块法的数学含义由于化工流程中,虽然变量多,但大部分变量之间没有直接的函数关系,故可借助分隔的手段将系统分解成若干个必须联立求解的子方程组,然后对各个方程组分别求解。涉及方程有:1)物性估算方程:2)单元模型方程:3)流股连接方程:4)设计规定方程:对单元输出、系统输出的约束方程。12/25/20222第四章序贯模块法1序贯模块法迭代层次与系统自由度经典序贯模块法的数学含义11序贯模块法迭代层次与系统自由度迭代层次12/25/20223第四章序贯模块法1序贯模块法迭代层次与系统自由度迭代层次12/19/201序贯模块法迭代层次与系统自由度系统的自由度系统自由度Dsys的确定是为了知道在系统模拟时应设定哪些必要的决策变量。Di代表系统中单元i的单元自由度;Kj为系统中单元之间第j个联结的联结限制数,即独立的联结流方程数。12/25/20224第四章序贯模块法1序贯模块法迭代层次与系统自由度系统的自由度12/19/22不可再分块迭代的收敛方法收敛:经过反复迭代,使迭代值接近初值的过程。在切断处设置迭代收敛框,其作用是:1)修正迭代变量;2)判别是否达到收敛。迭代收敛:即当满足一定的收敛准则时模拟问题得到近似解。收敛准则:12/25/20225第四章序贯模块法2不可再分块迭代的收敛方法收敛:经过反复迭代,使迭代值接近2不可再分块迭代的收敛方法直接迭代法直接送代法是以切断流股的初始猜算值为起点,按X(i+1)=F(X(i))的选代格式构成迭代序列进行迭代运算的。当满足迭代收敛准则式时,得到不可再分块的模拟解。变量X的维数为切断流股的总变量数Nst。显然Nst大大小于整个不可再分块的总变量数。序贯模块法将待解方程组进行了降阶处理,使求解过程变得更加容易。12/25/20226第四章序贯模块法2不可再分块迭代的收敛方法直接迭代法12/19/202262不可再分块迭代的收敛方法直接迭代法收敛性与具体描述化工过程系统模型的非线性特征有关。稳定单调下降收敛;为振荡衰减收敛;为振荡发散;为直接发散。12/25/20227第四章序贯模块法2不可再分块迭代的收敛方法直接迭代法12/19/202272不可再分块迭代的收敛方法直接迭代法一维x=f(x)直接迭代收敛的充分条件是f(x)一阶导数绝对值小于1。多维是一阶偏导数矩阵绝对值小于1。12/25/20228第四章序贯模块法2不可再分块迭代的收敛方法直接迭代法12/19/202282不可再分块迭代的收敛方法加权直接迭代法由于直接选代可能会发生不收敛的情况,为了改善收敛性能,采用加权直接送代的迭代格式X(i+1)=QX(i)+(I-Q)F(X(i))I——为单位矩阵,Q——为对角权矩阵。12/25/20229第四章序贯模块法2不可再分块迭代的收敛方法加权直接迭代法12/19/2022不可再分块迭代的收敛方法严格Wegstein法严格Wegstein法是一种加速迭代收敛的方法,与加权直接迭代法的选代格式在形式上完全相同,不同Q为满秩矩阵,几何意义,Wegstein迭代是将割线取代原曲线。割线方程的建立可以有两种不同的方法:第一次Wegstein迭代经过两次函数计算得到。12/25/202210第四章序贯模块法2不可再分块迭代的收敛方法严格Wegstein法12/192不可再分块迭代的收敛方法严格Wegstein法一维迭代式及迭代过程12/25/202211第四章序贯模块法2不可再分块迭代的收敛方法严格Wegstein法12/192不可再分块迭代的收敛方法严格Wegstein法多维送代必须经过Nst十1次直接送代后才能计算出迭代格式中的矩阵Q。简化Wegstein法只需先用二次直接送代就简化可计算出权因子,得矩阵Q。由于没有考虑迭代变量间的交互影响,简化Wegstein法的矩阵Q为对角矩阵,它的收敛性与严格Wegstein法相比要相对差一些。12/25/202212第四章序贯模块法2不可再分块迭代的收敛方法严格Wegstein法12/192不可再分块迭代的收敛方法Newton法将直接送代格式改写为齐次方程组的形式G(X)=X-F(X)=0,在解不可再分块时,实际上是解一组Nst维的非线性方程组。一维迭代过程12/25/202213第四章序贯模块法2不可再分块迭代的收敛方法Newton法12/19/2022不可再分块迭代的收敛方法Newton法几何意义是以切线代替曲线。12/25/202214第四章序贯模块法2不可再分块迭代的收敛方法Newton法12/19/2022不可再分块迭代的收敛方法Newton法存在的问题12/25/202215第四章序贯模块法2不可再分块迭代的收敛方法Newton法12/19/2022不可再分块迭代的收敛方法一维搜索法迭代式X(i+1)=X(i)+λiΔX(i),要确定λi确定。用二次拟合(抛物线)一维搜索确定λi步骤(P83):1)抛物线p(λ)=f(x+λΔx)的极小构成关于λ的一维优化问题,确定极小点区间。2)利用三点可以决定一条抛物线3)对抛物线方程求极小,得极小时的解λ*。4)满足判据:若满足判据,一维搜索结束,回到外层继续进行Newton迭代;否则执行步骤5。5)缩小搜索区间,重新构造新的两头高中间低的,回到步骤2,重复上述过程。12/25/202216第四章序贯模块法2不可再分块迭代的收敛方法一维搜索法12/19/202212不可再分块迭代的收敛方法一维搜索法一维搜索示意图12/25/202217第四章序贯模块法2不可再分块迭代的收敛方法一维搜索法12/19/202212不可再分块迭代的收敛方法各种算法性能比较I:直接送代;II:严格Wegstein法;III:离散Newton法;IV:离散Newton法;V:拟Newton法;VI:改进的综合算法12/25/202218第四章序贯模块法2不可再分块迭代的收敛方法各种算法性能比较12/19/203用序贯模块法解设计问题序贯模块法解算模拟问题是借助单元模块在单元过程参数已确定的条件下,可将输入流股变量变换成输出流股变量的模块特性来完成全流程的系统模拟计算。当化工系统中某一流股必须满足设计者所期望达到的指标。此时模拟问题序贯解法是不能直接接受设计规定的。解决办法:新增一个目标函数
Φ(u)=G*(u)-SP
u——控制过程参数;SP——设计规定12/25/202219第四章序贯模块法3用序贯模块法解设计问题序贯模块法解算模拟问题是借助单元模3用序贯模块法解设计问题解设计问题的步骤:1)对不可再分块中的环路进行无多余切断,设定切断变量的初始值,设定与设计规定相对应的过程参数u的初值。2)沿切断后计算次序序贯地计算有关单元,直至算出设计规定所表示的变量,即求G*(u)。3)按式Φ(u)=G*(u)-SP计算。4)判别是否符合设计规定,若不满足判据则用非线性方程数值解的方法对过程参数u进行修正。然后返回第2)步。5)按模拟问题的迭代方法修正切断变量,返回第2)步。12/25/202220第四章序贯模块法3用序贯模块法解设计问题解设计问题的步骤:12/19/203用序贯模块法解设计问题设计问题的分层迭代层次数学上认为解联立方程组12/25/202221第四章序贯模块法3用序贯模块法解设计问题设计问题的分层迭代层次12/19/序贯模块法序贯模块法——化工系统模拟计算方法。序贯法的基本问题是迭代变量的选择、计算顺序的确定、修正切断流股初始猜算值和选代方法。要点:1)序贯模块法——直接选代,加权直接送代,严格Wegstein法,简化Wegstein法,Newton法,一维搜索。2)序贯模块法的选代层次;系统的自由度;迭代格式;收敛准则,算法框图;算法的几何意义,线性收敛,平方收敛。3)不同的加速收敛方法;各种收敛方法之间的比较。4)序贯模块法解设计问题;自由变量(过程参数);收敛方法;序贯模块法结构分析的切断准则。5)数学方法应用于解模拟问题、设计问题。12/25/202222第四章序贯模块法序贯模块法序贯模块法——化工系统模拟计算方法。序贯法的基本问1序贯模块法迭代层次与系统自由度经典序贯模块法的数学含义由于化工流程中,虽然变量多,但大部分变量之间没有直接的函数关系,故可借助分隔的手段将系统分解成若干个必须联立求解的子方程组,然后对各个方程组分别求解。涉及方程有:1)物性估算方程:2)单元模型方程:3)流股连接方程:4)设计规定方程:对单元输出、系统输出的约束方程。12/25/202223第四章序贯模块法1序贯模块法迭代层次与系统自由度经典序贯模块法的数学含义11序贯模块法迭代层次与系统自由度迭代层次12/25/202224第四章序贯模块法1序贯模块法迭代层次与系统自由度迭代层次12/19/201序贯模块法迭代层次与系统自由度系统的自由度系统自由度Dsys的确定是为了知道在系统模拟时应设定哪些必要的决策变量。Di代表系统中单元i的单元自由度;Kj为系统中单元之间第j个联结的联结限制数,即独立的联结流方程数。12/25/202225第四章序贯模块法1序贯模块法迭代层次与系统自由度系统的自由度12/19/22不可再分块迭代的收敛方法收敛:经过反复迭代,使迭代值接近初值的过程。在切断处设置迭代收敛框,其作用是:1)修正迭代变量;2)判别是否达到收敛。迭代收敛:即当满足一定的收敛准则时模拟问题得到近似解。收敛准则:12/25/202226第四章序贯模块法2不可再分块迭代的收敛方法收敛:经过反复迭代,使迭代值接近2不可再分块迭代的收敛方法直接迭代法直接送代法是以切断流股的初始猜算值为起点,按X(i+1)=F(X(i))的选代格式构成迭代序列进行迭代运算的。当满足迭代收敛准则式时,得到不可再分块的模拟解。变量X的维数为切断流股的总变量数Nst。显然Nst大大小于整个不可再分块的总变量数。序贯模块法将待解方程组进行了降阶处理,使求解过程变得更加容易。12/25/202227第四章序贯模块法2不可再分块迭代的收敛方法直接迭代法12/19/202262不可再分块迭代的收敛方法直接迭代法收敛性与具体描述化工过程系统模型的非线性特征有关。稳定单调下降收敛;为振荡衰减收敛;为振荡发散;为直接发散。12/25/202228第四章序贯模块法2不可再分块迭代的收敛方法直接迭代法12/19/202272不可再分块迭代的收敛方法直接迭代法一维x=f(x)直接迭代收敛的充分条件是f(x)一阶导数绝对值小于1。多维是一阶偏导数矩阵绝对值小于1。12/25/202229第四章序贯模块法2不可再分块迭代的收敛方法直接迭代法12/19/202282不可再分块迭代的收敛方法加权直接迭代法由于直接选代可能会发生不收敛的情况,为了改善收敛性能,采用加权直接送代的迭代格式X(i+1)=QX(i)+(I-Q)F(X(i))I——为单位矩阵,Q——为对角权矩阵。12/25/202230第四章序贯模块法2不可再分块迭代的收敛方法加权直接迭代法12/19/2022不可再分块迭代的收敛方法严格Wegstein法严格Wegstein法是一种加速迭代收敛的方法,与加权直接迭代法的选代格式在形式上完全相同,不同Q为满秩矩阵,几何意义,Wegstein迭代是将割线取代原曲线。割线方程的建立可以有两种不同的方法:第一次Wegstein迭代经过两次函数计算得到。12/25/202231第四章序贯模块法2不可再分块迭代的收敛方法严格Wegstein法12/192不可再分块迭代的收敛方法严格Wegstein法一维迭代式及迭代过程12/25/202232第四章序贯模块法2不可再分块迭代的收敛方法严格Wegstein法12/192不可再分块迭代的收敛方法严格Wegstein法多维送代必须经过Nst十1次直接送代后才能计算出迭代格式中的矩阵Q。简化Wegstein法只需先用二次直接送代就简化可计算出权因子,得矩阵Q。由于没有考虑迭代变量间的交互影响,简化Wegstein法的矩阵Q为对角矩阵,它的收敛性与严格Wegstein法相比要相对差一些。12/25/202233第四章序贯模块法2不可再分块迭代的收敛方法严格Wegstein法12/192不可再分块迭代的收敛方法Newton法将直接送代格式改写为齐次方程组的形式G(X)=X-F(X)=0,在解不可再分块时,实际上是解一组Nst维的非线性方程组。一维迭代过程12/25/202234第四章序贯模块法2不可再分块迭代的收敛方法Newton法12/19/2022不可再分块迭代的收敛方法Newton法几何意义是以切线代替曲线。12/25/202235第四章序贯模块法2不可再分块迭代的收敛方法Newton法12/19/2022不可再分块迭代的收敛方法Newton法存在的问题12/25/202236第四章序贯模块法2不可再分块迭代的收敛方法Newton法12/19/2022不可再分块迭代的收敛方法一维搜索法迭代式X(i+1)=X(i)+λiΔX(i),要确定λi确定。用二次拟合(抛物线)一维搜索确定λi步骤(P83):1)抛物线p(λ)=f(x+λΔx)的极小构成关于λ的一维优化问题,确定极小点区间。2)利用三点可以决定一条抛物线3)对抛物线方程求极小,得极小时的解λ*。4)满足判据:若满足判据,一维搜索结束,回到外层继续进行Newton迭代;否则执行步骤5。5)缩小搜索区间,重新构造新的两头高中间低的,回到步骤2,重复上述过程。12/25/202237第四章序贯模块法2不可再分块迭代的收敛方法一维搜索法12/19/202212不可再分块迭代的收敛方法一维搜索法一维搜索示意图12/25/202238第四章序贯模块法2不可再分块迭代的收敛方法一维搜索法12/19/202212不可再分块迭代的收敛方法各种算法性能比较I:直接送代;II:严格Wegs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪科版九年级历史上册月考试卷
- 2024年粤教新版九年级数学下册月考试卷
- 2024年华师大版选择性必修3物理下册阶段测试试卷
- 2024-2025学年广西河池地区三上数学期末调研模拟试题含解析
- 创新教育视角下的小学生自然科学动手实践研究
- 企业如何构建高效能的服务支持团队
- 商业教育中的运动安全与设施建设探讨
- 2025中国联通龙游分公司招聘6人(浙江)高频重点提升(共500题)附带答案详解
- 2025中国社会科学院世界历史研究所第一批科研人员公开招聘7人高频重点提升(共500题)附带答案详解
- 2025中储粮集团财务限公司人员招聘高频重点提升(共500题)附带答案详解
- 【人民日报】72则金句期末评语模板-每页4张
- 合伙人散伙分家协议书范文
- 内科学(广东药科大学)智慧树知到期末考试答案章节答案2024年广东药科大学
- 2024年辽宁装备制造职业技术学院单招职业适应性测试题库带答案
- (正式版)JTT 1497-2024 公路桥梁塔柱施工平台及通道安全技术要求
- python程序设计-说课
- ISO15614-1 2017 金属材料焊接工艺规程及评定(中文版)
- 《单片机技术》课件-2-3实现电子门铃 -实操
- 《中国溃疡性结肠炎诊治指南(2023年)》解读
- 2024年知识竞赛-中小学财务管理知识笔试参考题库含答案
- 学术英语(下)智慧树知到期末考试答案2024年
评论
0/150
提交评论