版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
燃料电池工作原理、分类与组成燃料电池工作原理、分类与组成1各种燃料电池工作原理图各种燃料电池工作原理图2燃料电池工作原理、分类与组成课件3PEMFC阳极阴极总反应PEMFC阳极阴极总反应4阳极阴极总反应甲醇在阳极电化学氧化过程的机理非常复杂,在完成6个电子转移的过程中,会生成众多稳定或不稳定的中间物,有的中间物会成为电催化剂的毒物,导致催化剂中毒,从而降低电催化剂的电催化活性。DMFC阳极阴极总反应甲醇在阳极电化学氧化过程的机理非常复杂,在完成5甲醇氧化的可能步骤甲醇氧化的可能步骤6因此,DMFC开发过程中,甲醇直接氧化电催化剂的研发、反应机理等一直是研究热点,也是DMFC发展的关键之一。根据甲醇与水在电池阳极的进料方式不同,可将DMFC分为两类:以气态甲醇和水蒸汽为燃料和以甲醇水溶液为燃料。因此,DMFC开发过程中,甲醇直接氧化电催化剂的研发、反应机71)以气态甲醇和水蒸汽为燃料由于在常压下水的饱和温度为1000C,所以这种DMFC工作温度要高于1000C。目前交换膜的质子传导性都与液态水含量有关,因此,当电池工作温度超过1000C时,反应气的工作压力要高于大气压,这样电池系统就会变得很复杂。至今尚没有开发出能够在150-2000C下稳定工作,且不需液态水存在的交换膜。因此,这种DMFC目前研究的很少。1)以气态甲醇和水蒸汽为燃料8
2)以甲醇水溶液为燃料采用不同浓度的甲醇水溶液为燃料的液体DMFC,在室温及100oC之间可以在常压下运行。当电池工作温度超过100oC时,为防止水汽化而导致膜失水,也要对系统加压。以甲醇水溶液为燃料的DMFC是目前研发的重点。
2)以甲醇水溶液为燃料9
DMFC单位面积的输出功率紧为PEMFC的1/10-l/5,其原因主要有下述两个方面:1)甲醉阳极电化学氧化历程中生成类CO的中间物,导致Pt电催化剂中毒,严重降低了甲醇的电化学氧化速度(比氢气氧化的速度要低得多),增加阳极极化达百毫伏数量级。而当以氢为燃料时,当电池工作电流密度达1A/m2时.阳极极化也仅几十毫伏;
DMFC单位面积的输出功率紧为PEMFC的1/10-l/510燃料电池工作原理、分类与组成课件112)燃料甲醇通过浓差扩散和电迁移由膜的阳极侧迁移至阴极侧(甲醇渗透,Crossover),在阴极电位与Pt/C或Pt电催化剂作用下发生电化学氧化,并与氧的电化学还原构成短路电池,在阴极产生混合电位。甲醇经膜的这一渗透,不但导致氧电极产生混合电位,降低DMFC的开路电压,而且增加氧阴极极化和降低电池的电流效率。2)燃料甲醇通过浓差扩散和电迁移由膜的阳极侧迁移至阴极侧(12不同浓度下和负荷条件下甲醇渗透的变化不同浓度下和负荷条件下甲醇渗透的变化13DMFC与PEMFC不同点1)由甲醇阳极氧化电化学方程可知,当甲醇阳极氧化时,不但产生H+与电子,而且还产生气体CO2,因此尽管反应物CH30H与H20均为液体,仍要求电极具有憎水孔。而且由水电解工业经验可知,对析气电极,尤其是采用多孔气体扩散电极这类立体电极时,电极构成材料(Pt/C电催化剂)极易在析出的反应气作用下导致脱落、损失,进而影响电池寿命。因此与PEMFC相比,在DMFC阳极结构与制备工艺优化时,必须考虑CO2析出这一特殊因素。DMFC与PEMFC不同点142)当采用甲醇水溶液作燃料时,由于阳极室充满了液态水,DMFC质子交换膜阳极侧会始终保持在良好的水饱和状态下。2)当采用甲醇水溶液作燃料时,由于阳极室充满了液态水,DMF15
但与PEMFC不同的是,当DMFC工作时不管是电迁移还是浓差扩散,水均是由阳极侧迁移至阴极侧,即对以甲醇水溶液为燃料的DMFC,阴极需排出远大于电化学反应生成的水。因此与PEMFC相比,DMFC阴极侧不但排水负荷增大,而且阴极被水掩的情况更严重,在设计DMFC阴极结构与选定制备工艺时必须考虑这一因素。
但与PEMFC不同的是,当DMFC工作时不管是电迁移还是浓16正因为如此,在至今评价DMFC时,阴极氧化剂(如空气中氧)的利用率均很低,其目的是增加阴极流场内氧化剂的流动线速度,以利于向催化层的传质和水的排出,但这势必增加DMFC电池系统的内耗,这是研究高效大功率DMFC电池系统时必须解决的技术问题。正因为如此,在至今评价DMFC时,阴极氧化剂(如空气中氧)的17
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳极侧是浸入甲醇水溶液中的,加之在DMFC工作时,又有C02的析出;而阴极侧,排水量也远大于电化学反应生成水,不管是气化蒸发以气态排出,还是靠毛细力渗透到扩散层外部被气体吹扫以液态排水,均会对电极与膜之间结合界面产生一定分离作用力。
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳极侧是18因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改进结构与工艺,增加MEA的电极与膜之间的结合力,防止MEA在电池长时间工作时膜与电极分离、增加欧姆极化,大幅度降低电池性能,严重时导致电池失效。因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要19PAFCPAFC20燃料电池工作原理、分类与组成课件21PAFC的工作原理PAFC的工作原理22PAFC是一种以磷酸为电解质的燃料电池。PAFC采用重整天然气作燃料,空气做氧化剂,浸有浓磷酸的SiC微孔膜作电解质,Pt/C作催化剂,工作温度200℃。PAFC产生的直流电经过直交变换后以交流电的形式供给用户。PAFC是目前单机发电量最大的一种燃料电池。50-200kW功率的PAFC可供现场应用,1000kW功率以上的PAFC可应用于区域性电站。目前在美国、加拿大、欧洲和日本建立的大于200kW的PAFC的电站已运行多年,4500kW和11000kW的电站也开始运行。PAFC的主要技术突破是采用炭黑和石墨作电池的结构材料。至今还未发现除炭材外的任何一种材料不但具有高的电导,而且在酸性条件下具有高的抗腐蚀能力和低费用。因此可以说,采用非炭材、制备费用合理的酸性燃料电池是不可能的。PAFC是一种以磷酸为电解质的燃料电池。PAFC采用重整天然23电解质材料PAFC的电解质是浓磷酸溶液。磷酸在常温下导电性小,在高温下具有良好的离子导电性,所以PAFC的工作温度在200℃左右。磷酸是无色、油状且有吸水性的液体,它在水溶液中可离析出导电的氢离子。浓磷酸(质量分数为100%)的凝固点是42℃,低于这个温度使用时,PAFC的电解质将发生固化。而电解质的固化会对电极产生不可逆转的损伤,电池性能会下降。所以PAFC电池一旦启动,体系温度要始终维持在45℃以上。电解质材料PAFC的电解质是浓磷酸溶液。磷酸在常温下导电24隔膜材料PAFC的电解质封装在电池隔膜内。隔膜材料目前采用微孔结构隔膜,它由SiC和聚四氟乙烯组成,写作SiC-PTFE。新型的SiC-PTFE隔膜有直径极小的微孔,可兼顾分离效果和电解质传输。设计隔膜的孔径远小于PAFC采用的氢电极和氧电极(采用多孔气体扩散电极)的孔径,这样可以保证浓磷酸容纳在电解质隔膜内,起到离子导电和分隔氢、氧气体的作用。隔膜与电极紧贴组装后,当饱吸浓磷酸的隔膜与氢、氧电极组合成电池的时候,部分磷酸电解液会在电池阻力的作用下进入氢、氧多孔气体扩散电极的催化层,形成稳定的三相界面。隔膜材料PAFC的电解质封装在电池隔膜内。隔膜材料目前采用25PAFC结构PAFC结构26PAFC系统PAFC系统27AFCAFC28碱性燃料电池碱性燃料电池的设计基本与质子交换膜燃料电池相似,但其使用的电解质为水溶液或稳定的氢氧化钾基质。电化学反应:阳极:阴极:
碱性燃料电池的工作温度大约80℃。因此启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得笨拙。不过,它们是燃料电池中生产成本最低的,因此可用于小型的固定发电装置。碱性燃料电池碱性燃料电池的设计基本与质子交换膜燃料电池相似29碱性燃料电池(AFC)是燃料电池系统中最早开发并获得成功应用的一种。美国阿波罗登月宇宙飞船及航天飞机上即采用碱性燃料电池作为动力电源。实际飞行结果表明,AFC作为宇宙探测飞行等特殊用途的动力电源已经达到了实用化阶段。碱性燃料电池(AFC)是燃料电池系统中最早开发并获得成功应用30在过去相当长的一段时期内,AFC系统的研究范围涉及不同温度、燃料等各种情况下的电池结构、材料与电性能等。根据电池工作温度不同,AFC系统可分为中温型与低温型两种。前者以培根中温燃料电池为代表,它由英国培根(F.T.Bacon)研制,工作温度约为523K,阿波罗登月飞船上使用的AFC系统就属于这一类型。在过去相当长的一段时期内,AFC系统的研究范围涉及不同温度、31低温型APC系统的工作温度低于373K,是现在AFC系统研究与开发的重点。其应用目标是便携式电源及交通工具用动力电源。低温型APC系统的工作温度低于373K,是现在AFC系统研究32在燃料电池系统中采用液体燃料是吸引各种商业用户的有效途径之一。因为液体燃料储运方便,易处置。曾经考虑用作AFC系统的液体燃料有阱(N2H4)、液氨、甲醇和烃类。由于AFC系统通常以KOH溶液作为电解质,KOH与某些燃料可能产生的化学反应使得AFC几乎不能使用液体燃料。在燃料电池系统中采用液体燃料是吸引各种商业用户的有效途径之一33液体燃料在进入AFC电池堆之前必须进行预处理。阱(N2H4)在AFC阳极上易分解成氢气和氯气,其电极反应可能是:实验结果表明,以阱为燃料的AFC电性能与氢氧AFC电性能差不多相等。有人认为这两种燃料的电化学过程实际上是相同的,阱仅仅起到氢气源的作用。液体燃料在进入AFC电池堆之前必须进行预处理。阱(N2H4)34阱在AFC阳极表面分解的同时还可能产生对电极性能有害的氨。在阱电池中,电解液是连续循环的,并在循环过程中添加水合阱使浓度大体上维持恒定,这种循环也有助于除去电池工作中产生的氮气。排出的氮气中会带一些阱蒸汽,由于阱有毒且易爆,故须使废气通过乙醛或硫酸以除去其中的阱。电池反应产生的水也大部分随氮气一起排出。阱在AFC阳极表面分解的同时还可能产生对电极性能有害的氨。35电池的氧化剂曾采用纯氧、空气或H2O2等。若以空气代替纯氧,会大大增加排出气体中氮气的流量,使电池输出功率显著降低。电池的氧化剂曾采用纯氧、空气或H2O2等。36在五六十年代,阱-空气燃料电池曾作为军用电源大力开发。这种电池最主要的缺点是阱具有极高毒性、价格昂贵。而且,这种电池系统需要大量辅助设备,这不仅需要消耗电池所产生功率中的相当大一部分,而且在电池正常工作前必须启动这些辅助设备。因此,尽管在理论上阱氧化产生的能量比大多数其他燃料要大得多,但阱电池在商业上似乎不大可能有重要用途。在五六十年代,阱-空气燃料电池曾作为军用电源大力开发。37到了70年代,阱-空气燃料电池基本上停止了研究。除了阱-空气燃料电池,曾研究过的AFC系统还有氨-空气燃料电池。从长远的眼光来看,阱、液氨作为AFC的燃料是不可行的。目前,最具潜力的液体燃料是烃类、甲醇等。到了70年代,阱-空气燃料电池基本上停止了研究。38AFC的优点是:(1)效率高,因为氧在碱性介质中的还原反应比其他酸性介质高;(2)因为是碱性介质,可以用非铂催化剂;(3)因工作温度低,碱性介质,所以可以采用镍板做双极板。AFC的优点是:39AFC缺点是:(1)因为电解质为碱性,易与CO2生成K2CO3、Na2CO3沉淀,严重影响电池性能,所以必须除去CO2,这给其在常规环境中应用带来很大的困难。(2)电池的水平衡问题很复杂,影响电池的稳定性。AFC缺点是:40燃料電池的特性(一)电池种类碱性(AFC)质子交换膜(PEFC)磷酸(PAFC)电解质KOH含氟质子交换膜H3PO4阳极Pt/CPt/CPt/C阴极C(含觸煤)Pt/CPt/C流动离子OH-H+H+操作温度室温~100℃室温~80℃180~200℃可用燃料精炼氢气电解副产氢气天然气、甲醇汽油天然气、甲醇特性1.需使用高纯度氢气做燃料2.低腐蚀性及低温较易选择材料1.功率密度高,体积小,重量轻2.低腐蚀性及低溫,较易选择材料1.进气中CO会导致催化剂中毒2.废热可利用燃料電池的特性(一)电池种类碱性质子交换膜磷酸电解质KOH41燃料電池的特性(二)电池种类碱性(AFC)质子交换膜(PEFC)磷酸(PAFC)优点1.启动快2.室温常压下工作1.寿命长2.可用空气作氧化剂3.室温工作4.功率大5.启动迅速6.输出功率可隨意调整对CO2不敏感缺点1.需以纯氧作氧化剂2.成本高1.对CO非常敏感2.反应物需要加湿1.对CO敏感2.工作温度高3.成本高4.低于峰值功率输出時性能下降系统效率>40%>40%>40%用途太空船潜水艇小型发电机组分散型发电移动式电源运输工具电源汽电共生分散型发电移动式电源运输工具电源燃料電池的特性(二)电池碱性质子交换膜磷酸优点1.启动快142构成上述燃料电池的关键材料与部件:电极(阴极与阳极)电催化剂电解质(质子交换膜)双极板构成上述燃料电池的关键材料与部件:43电极均为气体扩散电极。它至少有两层构成:起支撑作用的扩散层和为电化学反应进行的催化层。催化层扩散层电极结构示意图电极电极均为气体扩散电极。催化层电极结构示意图电极441983年,加拿大国防部资助了巴拉德动力公司进行PEMFC的研究。在加拿大、美国等国科学家的共同努力下,FEMFC取得了突破性进展。采用薄的(50-150m)高电导率的Nafion和Dow全氟磺酸膜,使电池性能提高数倍。接着又采用铂炭催化剂代替纯铂黑,在电极催化层中加入全氟磺酸树脂,实现了电极的立体化.并将阴极、阳极与膜热压到一起,组成电极-膜-电极“三合一”组件(membrane-electrode-assembly,MEA)。1983年,加拿大国防部资助了巴拉德动力公司进行PEMFC的45这种工艺减少了膜与电池的接触电阻,并在电极内建立起质子通道,扩展了电极反应的三相界面,增加了铂的利用率。不但大幅度提高了电池性能,而且使电极的铂担量降至低于0.5mg/cm2,电池输出功率密度高达0.5-2w/cm2,电池组的质量比功率和体积比功率分别达到700w/kg和1000w/L。这种工艺减少了膜与电池的接触电阻,并在电极内建立起质子通道,46
47(一)扩散层功能:1)起支撑作用,为此要求扩散层适于担载催化层,扩散层与催化层的接触电阻要小;催化层主要成分是Pt/C电催化剂,故扩散层一般选炭材制备;2)反应气需经扩散层才能到达催化层参与电化学反应,因此扩散层应具备高孔隙率和适宜的孔分布,有利于传质。(一)扩散层48(3)阳极扩散层收集燃料的电化学氧化产生的电流,阴极扩散层为氧的电化学还原反应输送电子,即扩散层应是电的良导体。(4)PEMFC效率一般在50%左右,极化主要在氧阴极,因此扩散层尤其是氧电极的扩散层应是热的良导体。(5)扩散层材料与结构应能在燃料电池工作条件下保持良好的稳定性。(3)阳极扩散层收集燃料的电化学氧化产生的电流,阴极扩散层为49(二)离子交换膜最关键部件之一,直接影响电池的性能与寿命,应满足的要求:(1)高的离子传导能力;(2)在FC运行条件下,膜结构与树脂组成保持不变,即具有良好的化学和电化学稳定性;(3)具有低的反应气体渗透性,保证FC具有高的法拉第效率;(4)具有一定的机械强度。(二)离子交换膜50目前使用的主要是DuPont杜邦公司的全氟磺酸型质子交换膜,即Nafion膜,售价高达$500~800/m2。因此,开发性能优良的交换膜是当前研究的热点之一。全氟磺酸型质子交换膜传导质子必须要有水存在才行,其传导率与膜的含水率呈线性关系。实验表明,当相对湿度小于35%时,膜电导显著下降,而在相对湿度小于15%时,Nafion膜几乎成为绝缘体。目前使用的主要是DuPont杜邦公司的全氟磺酸型质子交换膜51燃料电池工作原理、分类与组成课件52燃料电池工作原理、分类与组成课件53电催化与催化剂电催化是电极与电解质界面上的电荷转移得以加速的一种催化作用。电催化的反应速度不仅由电催化剂的活性决定,还与双电层内电场及电解质溶液的本性有关。由于双电层内的场强很高,对参加电化学反应的分子或离子具有明显的活化作用,使反应所需的活化能大幅度降低,故大部分催化反应可在远比通常的化学反应低得多的温度下进行,如在铂黑电催化剂上,丙烷可在150~2000C完全氧化为CO2和水。电催化与催化剂54由电极过程动力学方程:上述方程就是著名的Butler-Volmer方程提高催化剂的活性,通过增加io(即提高i)可加速电化学反应速度,也可用改变极化的方法来改变电化学过程的速度。因为是在指数项上,通常改变100mv,i可改变几个数量级。而这种方法是有代价的,对FC来说,增加意味着降低FC能量转化的效率。在实际中,在一定反应速度下减少极化,以提高FC的能量转化效率。由电极过程动力学方程:上述方程就是著名的Butler-Vol55
对于贵金属催化剂,铂或铂合金等以颗粒状形式沉积于碳载体上或作为镍基金属电极的一部分。对于非贵金属催化剂,常采用镍粉末作阳极催化剂,而阴极催化剂为银基催化剂粉末。
56应考虑反应物在催化剂上形成的吸附键强度应适中。吸附键强度太弱,不但催化剂吸附反应物太少,且也难以活化反应物分子;反之,若吸附键强度太强,则其转化的中间物或产物难以脱附,会阻滞反应的进一步进行。应考虑反应物在催化剂上形成的吸附键强度应适中。吸附键强度太弱57电极结构与制备工艺1)电极结构第一层:疏水碳纸,通常称支撑层浸入40%~50%的聚四氟乙烯乳液后,孔隙率降至60%左右,平均孔径为12.5m。支撑层的厚度为0.2~0.4mm,它的作用是支撑催化层,同时起收集和传导电流的作用。第二层:整平层(扩散层),为便于在支撑层上制备催化层,在炭纸表面制备一层由X-72型炭和50%聚四氟乙烯乳液组成的混合物,厚度为1~2m。第三层:催化层,在扩散层上覆盖由铂/炭电催化剂+聚四氟乙烯乳液(30%~50%)的催化层,厚度约50m。一般而言,电极制备好后须经过滚压处理,压实后在320-340度烧结,以增强电极防水性。2)制备工艺扩散层:碳纸PTFE浸泡法整平层与催化层:喷涂法或刮膜法(类似于锂离子电池极片拉浆)电极结构与制备工艺1)电极结构58双极板双极板必须满足下述功能要求:①实现单池之间的电的联结,因此,它必须由导电良好的材料构成。②将燃料(如氢)和氧化剂(如氧)通过由双极板、密封件等构成的共用孔道,经各个单池的进气管导入各个单池,并由流场均匀分配到电极各处。③因为双极板两侧的流场分别是氧化剂与燃料通道,所以双极板必须是无孔的;由几种材料构成的复合双极扳,至少其中之一是无孔的,实现氧化剂与燃料的分隔。双极板59④构成双极板的材料必须在阳极运行条件下(一定的电极电位、氧化剂、还原剂等)抗腐蚀,以达到电池组的寿命要求,一般为几千小时至几万小时。⑤因为PEMFC电池组效率一般在50%左右,双权板材料必须是热的良导体,以利于电池组废热的排出。为降低电池组的成本,制备双极板的材料必须易于加工(如加工流场),最优的材料是适于用批量生产工艺加工的材料。至今,制备双极板广泛采用的材料是石墨和金属板。④构成双极板的材料必须在阳极运行条件下(一定的电极电位、氧化601.石墨双极板厚度为2-5mm,机加工共用通道,利用电脑刻绘机在其表面上加工流场。这种工艺费时,价高,不易批量生产。采用蛇形流场的石墨双极板图1.石墨双极板采用蛇形流场的石墨双极板图612.模铸双极板为降低成本和批量生产,发展了采用模铸法制备带流场的双极板。方法是将石墨粉和热塑性树脂均匀混合,有时需加入催化剂等,在一定温度下冲压成型,压力高达几MPa或几十MPa。该技术尚在发展之中。采用这种模铸法制备双极板,由于树脂未实现石墨化,双极板的本相电阻要高于石墨双极板,而且双极板与电极扩散层的接触电阻也比纯石墨大。但改进联合树脂材料、与石墨粉配比及模铸条件,可以减小模铸板的这两种电阻。2.模铸双极板623.金属双极板用薄金属板制备双极板的优点是可批量生产,如采用冲压技术制备各种结构的双极板。这是目前世界各国研发的重点之一。其难点:在PEMFC工作条件下的抗腐蚀问题(氧化,还原,一定的电位和弱酸性电解质下的稳定性);与扩散层(碳纸)的接触电阻大。抗腐蚀的方法之一是用改变合金组成与制备工艺的方法。3.金属双极板634.复合双极板采用廉价的多孔石墨板制备流场。由于这层多孔石墨流场板在电池工作时充满水,既有利于膜的保湿,也阻止反应气与作为分隔板的薄金属板(0.1-0.2mm)接触,因而减缓了它的腐蚀。这种复合双极板技术的关键是尽量减少多孔石墨流场板与薄金属分隔板间的接触电阻。4.复合双极板64流场作用是引导反应气流动方向,确保反应气均匀分配到电极各处,经扩散层到达催化层参与电化学反应。流场主要有:网状,多孔,平行沟槽,蛇形和交指状等。流场设计是至关重要的,而且很多是高度保密的专有技术。流场65平行沟槽流场平行沟槽流场66交指状流场交指状流场67多孔型流场多孔型流场68网状流场网状流场69单通道蛇形流场单通道蛇形流场70多通道蛇形流场多通道蛇形流场71单电池它是构成电池组的基本单元,电池组的设计要以单电池的实验数据为基础。各种关键材料的性能与寿命最终要通过单电池实验的考核。1.膜电极对于PEMFC,由于膜为高分子聚合物,仅靠电池组的组装力,不但电极与膜之间的接触不好,而且质子导体也无法进入多孔气体电极的内部。为了实现电极的立体化,需向多孔气体扩散电极内部加入质子导体(如全氟磺酸树脂),同时为改善电极与膜的接触,将已加入全氟磺酸树脂的阳极,隔膜(全氟磺酸膜)和已加入全氟磺酸树脂的阴极压合在一起,形成了“三合一”组件(MEA)单电池72燃料电池工作原理、分类与组成课件73电池组电池组的主体为MEA,双极板及相应可兼作电流导出板,为电池组的正极;另一端为阳单极板,也可兼作电流导入板,为电池组的负极,与这两块导流板相邻的是电池组端板,也称为夹板。在它上面除布有反应气与冷却液进出通道外,周围还布置有一定数目的圆孔,在组装电池时,圆孔内穿入螺杆,给电池组施加一定的组装力。若两块端板用金属(如不锈钢、铁板、超硬铝等)制作,还需在导流板与端板之间加入由工程塑料制备的绝缘板。电池组74电池组电池组75电池组电池组76电池组设计原则效率和比功率分别是电池组在标定功率下运行时的能量转化效率和在标定功率下运行时的质量比功率和体积比功率。1)对于民用发电(分散电源或家庭电源),能量转化效率更为重要,而对体积比功率与质量比功率的要求次之。故依据用户对电池组工作电压的要求确定串联的单电池数目时,一般选取单电池电压为0.70~0.75V。这样在不考虑燃料利用率时,电池组的效率可达56%~60%。再依据单电池的实验V-A特性曲线,确定电池组工作电流密度,进而依据用户对电池组标定功率的要求确定电极的工作面积。在确定工作面积时,还应考虑电池系统的内耗。电池组设计原则772)对于电动车发动机用的PEMFC和各种移动动力源,则对电池组的质量比功率和体积比功率的要求更高些。为提高电池组的质量比功率和体积比功率,在电池关键材料与单电池性能已定时,只有提高电池工作电流密度,此时一般选取单电池工作电压为0.60-0.65V,再依据用户对电池工作电压的要求确定单电池数目,进而依据V-A特性曲线确定电极的工作面积。2)对于电动车发动机用的PEMFC和各种移动动力源,则对电池78流场对PEMFC电池组至关重要,而且与反应气纯度、电池系统的流程密切相关。因此,在设计电池组结构时,需根据具体条件,如反应气纯度、流程设计(如有无尾气回流,如有,回流比是多少等)进行化工设计,各项参数均要达到设计要求,并经单电池实验验证可行后方可确定。流场对PEMFC电池组至关重要,而且与反应气纯度、电池系统的79电池组密封要求是按照设计的密封结构,在电池组组装力的作用下,达到反应气、冷却液不外漏,燃料、氧化剂和冷却液不互窜。电池组密封80电池组的水管理由于膜的质子(离子)导电性与膜的润湿状态密切相关,因此保证膜的充分湿润性是电池正常运行的关键因素之一。PEMFC的工作温度低于100℃,电池内生成的水是以液态形式存在,一般是采用适宜的流场,确保反应气在流场内流动线速度达到一定值(如几米每秒以上),依靠反应气吹扫出电池反应生成的水。但大量液态水的存在会导致阴极扩散层内氧传质速度的降低。因此,如何保证适宜的操作条件,使生成水的90%以上以气态水形式排出。这样不但能增加氧阴极气体扩散层内氧的传质速度,而且还会减少电池组废热排出的热负荷。电池组的水管理81燃料电池工作原理、分类与组成课件82质子交换膜内的水传递过程有三种传递方式:1)电迁移:水分子与H+一起,由膜的阳极侧向阴极侧迁移。电迁移的水量与电池工作电流密度和质子的水合数有关。2)浓差反扩散:因为PEMFC为酸性燃料电池,水在阴极生成,因此,膜阴极侧水浓度高于阳极侧,在水浓差的作用下,水由膜的阴极侧向阳极侧反扩散。反扩散迁移的水量与水的浓度梯度和水在质子交换膜内的扩散系数成正比。燃料电池工作原理、分类与组成课件833)压力迁移:在PEMFC的运行过程中,一般使氧化剂压力高于还原剂的压力,在反应气压力梯度作用下,水由膜的阴极侧向阳极侧传递,即压力迁移。压力迁移的水量与压力梯度和水在膜中的渗透系数成正比,而与水在膜中的粘度成反比。3)压力迁移:在PEMFC的运行过程中,一般使氧化剂压力高于84电池的排水对于燃料电池,常用排水方法有动态排水与静态排水两种。(1)动态排水:动态排水法又称氢循环排水法。其原理是用泵循环氢气,将水蒸气带出电池,然后在冷凝器中将水蒸气冷疑,回收氢气。由于水蒸气的气相扩散和蒸发与冷凝速度均较快,因此,排水速度由氢循环量、电堆工作温度和冷凝器工作温度确定。(2)静态排水:原理是在氢气腔背面加一块饱吸KOH的排水膜(该膜内吸饱的KOH电解液浓度比电解质隔膜内的要浓一些.膜的另一侧是水腔),在多孔阳极内部电化学反应生成的水汽化,靠浓差迁移至排水膜燃料腔一侧并冷凝,然后靠浓差迁移通过排水膜,电池的排水85在排水膜水腔侧减压蒸发,借压差进入冷凝器冷凝、回收。与动态排水一样,因水的蒸发、冷凝与气相扩散速度均较快,所以整个排水速度由水在排水膜内迁移速度决定。静态排水控制条件比动态排水少,而且不受气流分布影响,没有运动部件,但是,它要在电池堆内增加一个水腔与一块排水膜,不仅制作工艺复杂,而且必然增加电堆重量。因此,要根据具体应用条件来选取排水方法。对于航天用的AFC系统,因有宇宙这一巨大真空源,采用静态排水法可能比较有利。在排水膜水腔侧减压蒸发,借压差进入冷凝器冷凝、回收。与动态排86电池组的热管理为了维持电池的工作温度恒定,必须将FC产生的废热排出。目前对PEMFC电池组采用的排热方法主要是冷却液循环排热法。冷却液是纯水或水与乙二醇的混合液。对于小功率的FC电池组,也可采用空气冷却方式。正在发展采用液体(如乙醇)蒸发排热方法。电池组的热管理87在电池组排热设计中,应根据电池组的排热负荷,在确定的电池组循环冷却液进出口最大压差的前提下,依据冷却液的比热容计算其流量。为确保电池组温度分布的均匀性,冷却液进出口最大温差一般不超过100C,最好为50C。这样,冷却水流量比较大,为减少冷却水泵功耗,应尽量减少冷却液流经电池组的压力降。在冷却通道的设计中要考虑流动阻力的因素。在电池组排热设计中,应根据电池组的排热负荷,在确定的电池组循88当以水为冷却液时,应采用去离子水,对水的电导要求很严格。一旦水被污染,电导升高,则在电池组的冷却水流经的共用管道内要发生轻微的电解,产生氢氧混合气体,影响电池的安全运行,同时也会产生一定的内漏电,降低电池组的能量转化效率。当以水为冷却液时,应采用去离子水,对水的电导要求很严格。89当用水和乙二醇混合液作为冷却剂时,冷却剂的电阻将增大。由于冷却剂的比热容降低,循环量要增大,而且一旦冷却剂被金属离子污染,其去除要比纯水难度大得多,因为水中的污染金属离子可通过离子交换法去除。空气冷却:对千瓦级尤其是百瓦级PEMFC电池组,可以采用空气冷却来排除电池组产生的废热。当用水和乙二醇混合液作为冷却剂时,冷却剂的电阻将增大。由于冷90排热板流场结构示意图排热板流场结构示意图91常压空气冷却的双极板结构示意常压空气冷却的双极板结构示意92电池组失效的原因电池组在长时间运行中,除了因电催化剂中毒与老化,质子交换膜的老化、腐蚀和污染,导致其能量转换效率低于设定值而需要更换外,有时在启动、停机和运行,特别是当负荷发生大幅度变化时,电池组内某节或某几节电池会失效,甚至可能会发生爆炸,导致整个电池组失效。电池组失效的原因93电池组失效的主要原因有下述两种:1.单节或数节电池失效由n节单电池串联构成电池组,当电池组在一定电流输出稳定运行时,电池组工作电压V是:式中,Vi为第i节电池的工作电压。电池组失效的主要原因有下述两种:式中,Vi为第i节电池的工作94在电池系统中发生某几节单电池燃料或氧化剂供应不足的原因主要有:1)供气系统故障:如氢气的减压稳压器突然失效,空压机故障导致供气量减少或停止工作等。2)电池排气系统故障或原料气纯度不匹配:如氢气排气电磁阀失灵,导致氢气长时间无排放,或原设定排气量不适应偶然使用过低浓度的反应气。在电池系统中发生某几节单电池燃料或氧化剂供应不足的原因主要有953)双极板流场加工不均匀:MEA制备的不均匀性、组装时密封件变形和MEA压深的不均匀性等导致电池组内各单电池阻力分配不均匀。3)双极板流场加工不均匀:MEA制备的不均匀性、组装时密封件964)反应气体流速过低:对于电池,一般会存在部分或大部分电化学反应生成液态水,反应气室内为两相流。若流场设计时不能确保反应气具有一定的线速度(如<5m/s),即反应气流速过低,不能及时将液态水吹出电池,导致液态水在某节电池中积累,特别是在电池的出口处积累,导致该节电池阻力过大,严重时不能获得充足的氧化剂的供应而出现故障。燃料电池工作原理、分类与组成课件97所以,流道的设计和加工制做,关键部件的制备和组装工艺质量,及电池的运行管理等对于电池的安全运行是至关重要的。所以,流道的设计和加工制做,关键部件的制备和组装工艺质量,及98因此,可以检测电池组内电池的电压,一旦某节电池的工作电压达到“0”V,立即切断电池的负载,则这种电池组失效的事故即可以避免。因此,可以检测电池组内电池的电压,一旦某节电池的工作电压达到992.交换膜破坏导致电池组的失效质子交换膜在PEMFC中除了传导质子外,还起分隔燃料与氧化剂的作用。如果质子交换膜局部破坏,会导致燃料与氧化剂的混合,在电催化剂作用下将发生燃烧与爆炸,烧毁电池组内某节或几节电池,导致电池组失效。燃料电池工作原理、分类与组成课件100交换膜破坏的原因主要有:1)热点击穿2)MEA制备时机械损伤与反应气压力波动3)膜的含水量急剧变化导致膜损伤目前组装PEMFC电池组广泛采用的交换膜(如Nafion膜)尺寸稳定性较差,膜吸水时要溶胀,失水时收缩,变化幅度高达10%~20%。若MEA制备条件不合适,或在电池启停过程中引起膜的水含量大幅度急剧变化,或电池运行过程中预增湿能力不足,会导致MEA中膜的尺寸急剧变化而破坏。交换膜破坏的原因主要有:101与其他化学电源一样,燃料电池电极结构的均质性与电极再生性能是电池保持良好性能与长寿命的关键。这意味着无论是实验室阶段还是批量生产阶段,对于每个电极的生产必须进行严格的质量控制与检测。与其他化学电源一样,燃料电池电极结构的均质性与电极再102改善电池系统经济性作为一般用途的燃料电池,必须考虑其经济性。对于电动汽车、民用发电装置用的电池系统,在提高电池性能基础上,应合理设计电池系统中各个构件及其制造方法,并能形成生产过程自动化、系列化。这不仅能提高生产能力,也是降低电池生产成本的有效途径。改善电池系统经济性103与改善电池系统经济性有关的电池技术开发课题主要有以下几个方面。(1)降低电极中贵金属催化剂负载量,开发非贵金属电极催化剂,减少电极材料费。与改善电池系统经济性有关的电池技术开发课题主要有以下几个方面104(2)大部分电池需要用纯氢作燃料,为扩大其应用范围,必须改进氢气储存方式。对于小功率电池系统,如便携式(可移动式)电源、电动汽车动力电源,通常以贮氢罐供给电池燃料。贮氢罐携带方便,易更换,但其安全性令人担忧,尤其是在电动汽车那样摇晃、震动的场合,安装贮氢罐就好象在车上安一枚重磅炸弹。目前,贮氢合金材料的研究取得可喜成果,这为电池的贮氢问题提供了一条新的解决途径。(2)大部分电池需要用纯氢作燃料,为扩大其应用范围,必须改进105(3)对于大功率电池系统,氢气来源是多样化的,包括天然气、甲醇、石油和煤等燃料。必须开发流程简单、投资少的燃料转化与分离技术,获得廉价的纯氢。从当前燃料电池技术发展趋势来看,由于电池需用纯氢作燃料,限制了电池的应用范围和发展前景。在电池商业化过程中,燃料转化与分离费用的提高,使得电池与其他燃料电池如SOFC,MOFC等的竞争力下降。(3)对于大功率电池系统,氢气来源是多样化的,包括天然气、甲106谢谢!谢谢!107燃料电池工作原理、分类与组成燃料电池工作原理、分类与组成108各种燃料电池工作原理图各种燃料电池工作原理图109燃料电池工作原理、分类与组成课件110PEMFC阳极阴极总反应PEMFC阳极阴极总反应111阳极阴极总反应甲醇在阳极电化学氧化过程的机理非常复杂,在完成6个电子转移的过程中,会生成众多稳定或不稳定的中间物,有的中间物会成为电催化剂的毒物,导致催化剂中毒,从而降低电催化剂的电催化活性。DMFC阳极阴极总反应甲醇在阳极电化学氧化过程的机理非常复杂,在完成112甲醇氧化的可能步骤甲醇氧化的可能步骤113因此,DMFC开发过程中,甲醇直接氧化电催化剂的研发、反应机理等一直是研究热点,也是DMFC发展的关键之一。根据甲醇与水在电池阳极的进料方式不同,可将DMFC分为两类:以气态甲醇和水蒸汽为燃料和以甲醇水溶液为燃料。因此,DMFC开发过程中,甲醇直接氧化电催化剂的研发、反应机1141)以气态甲醇和水蒸汽为燃料由于在常压下水的饱和温度为1000C,所以这种DMFC工作温度要高于1000C。目前交换膜的质子传导性都与液态水含量有关,因此,当电池工作温度超过1000C时,反应气的工作压力要高于大气压,这样电池系统就会变得很复杂。至今尚没有开发出能够在150-2000C下稳定工作,且不需液态水存在的交换膜。因此,这种DMFC目前研究的很少。1)以气态甲醇和水蒸汽为燃料115
2)以甲醇水溶液为燃料采用不同浓度的甲醇水溶液为燃料的液体DMFC,在室温及100oC之间可以在常压下运行。当电池工作温度超过100oC时,为防止水汽化而导致膜失水,也要对系统加压。以甲醇水溶液为燃料的DMFC是目前研发的重点。
2)以甲醇水溶液为燃料116
DMFC单位面积的输出功率紧为PEMFC的1/10-l/5,其原因主要有下述两个方面:1)甲醉阳极电化学氧化历程中生成类CO的中间物,导致Pt电催化剂中毒,严重降低了甲醇的电化学氧化速度(比氢气氧化的速度要低得多),增加阳极极化达百毫伏数量级。而当以氢为燃料时,当电池工作电流密度达1A/m2时.阳极极化也仅几十毫伏;
DMFC单位面积的输出功率紧为PEMFC的1/10-l/5117燃料电池工作原理、分类与组成课件1182)燃料甲醇通过浓差扩散和电迁移由膜的阳极侧迁移至阴极侧(甲醇渗透,Crossover),在阴极电位与Pt/C或Pt电催化剂作用下发生电化学氧化,并与氧的电化学还原构成短路电池,在阴极产生混合电位。甲醇经膜的这一渗透,不但导致氧电极产生混合电位,降低DMFC的开路电压,而且增加氧阴极极化和降低电池的电流效率。2)燃料甲醇通过浓差扩散和电迁移由膜的阳极侧迁移至阴极侧(119不同浓度下和负荷条件下甲醇渗透的变化不同浓度下和负荷条件下甲醇渗透的变化120DMFC与PEMFC不同点1)由甲醇阳极氧化电化学方程可知,当甲醇阳极氧化时,不但产生H+与电子,而且还产生气体CO2,因此尽管反应物CH30H与H20均为液体,仍要求电极具有憎水孔。而且由水电解工业经验可知,对析气电极,尤其是采用多孔气体扩散电极这类立体电极时,电极构成材料(Pt/C电催化剂)极易在析出的反应气作用下导致脱落、损失,进而影响电池寿命。因此与PEMFC相比,在DMFC阳极结构与制备工艺优化时,必须考虑CO2析出这一特殊因素。DMFC与PEMFC不同点1212)当采用甲醇水溶液作燃料时,由于阳极室充满了液态水,DMFC质子交换膜阳极侧会始终保持在良好的水饱和状态下。2)当采用甲醇水溶液作燃料时,由于阳极室充满了液态水,DMF122
但与PEMFC不同的是,当DMFC工作时不管是电迁移还是浓差扩散,水均是由阳极侧迁移至阴极侧,即对以甲醇水溶液为燃料的DMFC,阴极需排出远大于电化学反应生成的水。因此与PEMFC相比,DMFC阴极侧不但排水负荷增大,而且阴极被水掩的情况更严重,在设计DMFC阴极结构与选定制备工艺时必须考虑这一因素。
但与PEMFC不同的是,当DMFC工作时不管是电迁移还是浓123正因为如此,在至今评价DMFC时,阴极氧化剂(如空气中氧)的利用率均很低,其目的是增加阴极流场内氧化剂的流动线速度,以利于向催化层的传质和水的排出,但这势必增加DMFC电池系统的内耗,这是研究高效大功率DMFC电池系统时必须解决的技术问题。正因为如此,在至今评价DMFC时,阴极氧化剂(如空气中氧)的124
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳极侧是浸入甲醇水溶液中的,加之在DMFC工作时,又有C02的析出;而阴极侧,排水量也远大于电化学反应生成水,不管是气化蒸发以气态排出,还是靠毛细力渗透到扩散层外部被气体吹扫以液态排水,均会对电极与膜之间结合界面产生一定分离作用力。
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳极侧是125因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改进结构与工艺,增加MEA的电极与膜之间的结合力,防止MEA在电池长时间工作时膜与电极分离、增加欧姆极化,大幅度降低电池性能,严重时导致电池失效。因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要126PAFCPAFC127燃料电池工作原理、分类与组成课件128PAFC的工作原理PAFC的工作原理129PAFC是一种以磷酸为电解质的燃料电池。PAFC采用重整天然气作燃料,空气做氧化剂,浸有浓磷酸的SiC微孔膜作电解质,Pt/C作催化剂,工作温度200℃。PAFC产生的直流电经过直交变换后以交流电的形式供给用户。PAFC是目前单机发电量最大的一种燃料电池。50-200kW功率的PAFC可供现场应用,1000kW功率以上的PAFC可应用于区域性电站。目前在美国、加拿大、欧洲和日本建立的大于200kW的PAFC的电站已运行多年,4500kW和11000kW的电站也开始运行。PAFC的主要技术突破是采用炭黑和石墨作电池的结构材料。至今还未发现除炭材外的任何一种材料不但具有高的电导,而且在酸性条件下具有高的抗腐蚀能力和低费用。因此可以说,采用非炭材、制备费用合理的酸性燃料电池是不可能的。PAFC是一种以磷酸为电解质的燃料电池。PAFC采用重整天然130电解质材料PAFC的电解质是浓磷酸溶液。磷酸在常温下导电性小,在高温下具有良好的离子导电性,所以PAFC的工作温度在200℃左右。磷酸是无色、油状且有吸水性的液体,它在水溶液中可离析出导电的氢离子。浓磷酸(质量分数为100%)的凝固点是42℃,低于这个温度使用时,PAFC的电解质将发生固化。而电解质的固化会对电极产生不可逆转的损伤,电池性能会下降。所以PAFC电池一旦启动,体系温度要始终维持在45℃以上。电解质材料PAFC的电解质是浓磷酸溶液。磷酸在常温下导电131隔膜材料PAFC的电解质封装在电池隔膜内。隔膜材料目前采用微孔结构隔膜,它由SiC和聚四氟乙烯组成,写作SiC-PTFE。新型的SiC-PTFE隔膜有直径极小的微孔,可兼顾分离效果和电解质传输。设计隔膜的孔径远小于PAFC采用的氢电极和氧电极(采用多孔气体扩散电极)的孔径,这样可以保证浓磷酸容纳在电解质隔膜内,起到离子导电和分隔氢、氧气体的作用。隔膜与电极紧贴组装后,当饱吸浓磷酸的隔膜与氢、氧电极组合成电池的时候,部分磷酸电解液会在电池阻力的作用下进入氢、氧多孔气体扩散电极的催化层,形成稳定的三相界面。隔膜材料PAFC的电解质封装在电池隔膜内。隔膜材料目前采用132PAFC结构PAFC结构133PAFC系统PAFC系统134AFCAFC135碱性燃料电池碱性燃料电池的设计基本与质子交换膜燃料电池相似,但其使用的电解质为水溶液或稳定的氢氧化钾基质。电化学反应:阳极:阴极:
碱性燃料电池的工作温度大约80℃。因此启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得笨拙。不过,它们是燃料电池中生产成本最低的,因此可用于小型的固定发电装置。碱性燃料电池碱性燃料电池的设计基本与质子交换膜燃料电池相似136碱性燃料电池(AFC)是燃料电池系统中最早开发并获得成功应用的一种。美国阿波罗登月宇宙飞船及航天飞机上即采用碱性燃料电池作为动力电源。实际飞行结果表明,AFC作为宇宙探测飞行等特殊用途的动力电源已经达到了实用化阶段。碱性燃料电池(AFC)是燃料电池系统中最早开发并获得成功应用137在过去相当长的一段时期内,AFC系统的研究范围涉及不同温度、燃料等各种情况下的电池结构、材料与电性能等。根据电池工作温度不同,AFC系统可分为中温型与低温型两种。前者以培根中温燃料电池为代表,它由英国培根(F.T.Bacon)研制,工作温度约为523K,阿波罗登月飞船上使用的AFC系统就属于这一类型。在过去相当长的一段时期内,AFC系统的研究范围涉及不同温度、138低温型APC系统的工作温度低于373K,是现在AFC系统研究与开发的重点。其应用目标是便携式电源及交通工具用动力电源。低温型APC系统的工作温度低于373K,是现在AFC系统研究139在燃料电池系统中采用液体燃料是吸引各种商业用户的有效途径之一。因为液体燃料储运方便,易处置。曾经考虑用作AFC系统的液体燃料有阱(N2H4)、液氨、甲醇和烃类。由于AFC系统通常以KOH溶液作为电解质,KOH与某些燃料可能产生的化学反应使得AFC几乎不能使用液体燃料。在燃料电池系统中采用液体燃料是吸引各种商业用户的有效途径之一140液体燃料在进入AFC电池堆之前必须进行预处理。阱(N2H4)在AFC阳极上易分解成氢气和氯气,其电极反应可能是:实验结果表明,以阱为燃料的AFC电性能与氢氧AFC电性能差不多相等。有人认为这两种燃料的电化学过程实际上是相同的,阱仅仅起到氢气源的作用。液体燃料在进入AFC电池堆之前必须进行预处理。阱(N2H4)141阱在AFC阳极表面分解的同时还可能产生对电极性能有害的氨。在阱电池中,电解液是连续循环的,并在循环过程中添加水合阱使浓度大体上维持恒定,这种循环也有助于除去电池工作中产生的氮气。排出的氮气中会带一些阱蒸汽,由于阱有毒且易爆,故须使废气通过乙醛或硫酸以除去其中的阱。电池反应产生的水也大部分随氮气一起排出。阱在AFC阳极表面分解的同时还可能产生对电极性能有害的氨。142电池的氧化剂曾采用纯氧、空气或H2O2等。若以空气代替纯氧,会大大增加排出气体中氮气的流量,使电池输出功率显著降低。电池的氧化剂曾采用纯氧、空气或H2O2等。143在五六十年代,阱-空气燃料电池曾作为军用电源大力开发。这种电池最主要的缺点是阱具有极高毒性、价格昂贵。而且,这种电池系统需要大量辅助设备,这不仅需要消耗电池所产生功率中的相当大一部分,而且在电池正常工作前必须启动这些辅助设备。因此,尽管在理论上阱氧化产生的能量比大多数其他燃料要大得多,但阱电池在商业上似乎不大可能有重要用途。在五六十年代,阱-空气燃料电池曾作为军用电源大力开发。144到了70年代,阱-空气燃料电池基本上停止了研究。除了阱-空气燃料电池,曾研究过的AFC系统还有氨-空气燃料电池。从长远的眼光来看,阱、液氨作为AFC的燃料是不可行的。目前,最具潜力的液体燃料是烃类、甲醇等。到了70年代,阱-空气燃料电池基本上停止了研究。145AFC的优点是:(1)效率高,因为氧在碱性介质中的还原反应比其他酸性介质高;(2)因为是碱性介质,可以用非铂催化剂;(3)因工作温度低,碱性介质,所以可以采用镍板做双极板。AFC的优点是:146AFC缺点是:(1)因为电解质为碱性,易与CO2生成K2CO3、Na2CO3沉淀,严重影响电池性能,所以必须除去CO2,这给其在常规环境中应用带来很大的困难。(2)电池的水平衡问题很复杂,影响电池的稳定性。AFC缺点是:147燃料電池的特性(一)电池种类碱性(AFC)质子交换膜(PEFC)磷酸(PAFC)电解质KOH含氟质子交换膜H3PO4阳极Pt/CPt/CPt/C阴极C(含觸煤)Pt/CPt/C流动离子OH-H+H+操作温度室温~100℃室温~80℃180~200℃可用燃料精炼氢气电解副产氢气天然气、甲醇汽油天然气、甲醇特性1.需使用高纯度氢气做燃料2.低腐蚀性及低温较易选择材料1.功率密度高,体积小,重量轻2.低腐蚀性及低溫,较易选择材料1.进气中CO会导致催化剂中毒2.废热可利用燃料電池的特性(一)电池种类碱性质子交换膜磷酸电解质KOH148燃料電池的特性(二)电池种类碱性(AFC)质子交换膜(PEFC)磷酸(PAFC)优点1.启动快2.室温常压下工作1.寿命长2.可用空气作氧化剂3.室温工作4.功率大5.启动迅速6.输出功率可隨意调整对CO2不敏感缺点1.需以纯氧作氧化剂2.成本高1.对CO非常敏感2.反应物需要加湿1.对CO敏感2.工作温度高3.成本高4.低于峰值功率输出時性能下降系统效率>40%>40%>40%用途太空船潜水艇小型发电机组分散型发电移动式电源运输工具电源汽电共生分散型发电移动式电源运输工具电源燃料電池的特性(二)电池碱性质子交换膜磷酸优点1.启动快1149构成上述燃料电池的关键材料与部件:电极(阴极与阳极)电催化剂电解质(质子交换膜)双极板构成上述燃料电池的关键材料与部件:150电极均为气体扩散电极。它至少有两层构成:起支撑作用的扩散层和为电化学反应进行的催化层。催化层扩散层电极结构示意图电极电极均为气体扩散电极。催化层电极结构示意图电极1511983年,加拿大国防部资助了巴拉德动力公司进行PEMFC的研究。在加拿大、美国等国科学家的共同努力下,FEMFC取得了突破性进展。采用薄的(50-150m)高电导率的Nafion和Dow全氟磺酸膜,使电池性能提高数倍。接着又采用铂炭催化剂代替纯铂黑,在电极催化层中加入全氟磺酸树脂,实现了电极的立体化.并将阴极、阳极与膜热压到一起,组成电极-膜-电极“三合一”组件(membrane-electrode-assembly,MEA)。1983年,加拿大国防部资助了巴拉德动力公司进行PEMFC的152这种工艺减少了膜与电池的接触电阻,并在电极内建立起质子通道,扩展了电极反应的三相界面,增加了铂的利用率。不但大幅度提高了电池性能,而且使电极的铂担量降至低于0.5mg/cm2,电池输出功率密度高达0.5-2w/cm2,电池组的质量比功率和体积比功率分别达到700w/kg和1000w/L。这种工艺减少了膜与电池的接触电阻,并在电极内建立起质子通道,153
154(一)扩散层功能:1)起支撑作用,为此要求扩散层适于担载催化层,扩散层与催化层的接触电阻要小;催化层主要成分是Pt/C电催化剂,故扩散层一般选炭材制备;2)反应气需经扩散层才能到达催化层参与电化学反应,因此扩散层应具备高孔隙率和适宜的孔分布,有利于传质。(一)扩散层155(3)阳极扩散层收集燃料的电化学氧化产生的电流,阴极扩散层为氧的电化学还原反应输送电子,即扩散层应是电的良导体。(4)PEMFC效率一般在50%左右,极化主要在氧阴极,因此扩散层尤其是氧电极的扩散层应是热的良导体。(5)扩散层材料与结构应能在燃料电池工作条件下保持良好的稳定性。(3)阳极扩散层收集燃料的电化学氧化产生的电流,阴极扩散层为156(二)离子交换膜最关键部件之一,直接影响电池的性能与寿命,应满足的要求:(1)高的离子传导能力;(2)在FC运行条件下,膜结构与树脂组成保持不变,即具有良好的化学和电化学稳定性;(3)具有低的反应气体渗透性,保证FC具有高的法拉第效率;(4)具有一定的机械强度。(二)离子交换膜157目前使用的主要是DuPont杜邦公司的全氟磺酸型质子交换膜,即Nafion膜,售价高达$500~800/m2。因此,开发性能优良的交换膜是当前研究的热点之一。全氟磺酸型质子交换膜传导质子必须要有水存在才行,其传导率与膜的含水率呈线性关系。实验表明,当相对湿度小于35%时,膜电导显著下降,而在相对湿度小于15%时,Nafion膜几乎成为绝缘体。目前使用的主要是DuPont杜邦公司的全氟磺酸型质子交换膜158燃料电池工作原理、分类与组成课件159燃料电池工作原理、分类与组成课件160电催化与催化剂电催化是电极与电解质界面上的电荷转移得以加速的一种催化作用。电催化的反应速度不仅由电催化剂的活性决定,还与双电层内电场及电解质溶液的本性有关。由于双电层内的场强很高,对参加电化学反应的分子或离子具有明显的活化作用,使反应所需的活化能大幅度降低,故大部分催化反应可在远比通常的化学反应低得多的温度下进行,如在铂黑电催化剂上,丙烷可在150~2000C完全氧化为CO2和水。电催化与催化剂161由电极过程动力学方程:上述方程就是著名的Butler-Volmer方程提高催化剂的活性,通过增加io(即提高i)可加速电化学反应速度,也可用改变极化的方法来改变电化学过程的速度。因为是在指数项上,通常改变100mv,i可改变几个数量级。而这种方法是有代价的,对FC来说,增加意味着降低FC能量转化的效率。在实际中,在一定反应速度下减少极化,以提高FC的能量转化效率。由电极过程动力学方程:上述方程就是著名的Butler-Vol162
对于贵金属催化剂,铂或铂合金等以颗粒状形式沉积于碳载体上或作为镍基金属电极的一部分。对于非贵金属催化剂,常采用镍粉末作阳极催化剂,而阴极催化剂为银基催化剂粉末。
163应考虑反应物在催化剂上形成的吸附键强度应适中。吸附键强度太弱,不但催化剂吸附反应物太少,且也难以活化反应物分子;反之,若吸附键强度太强,则其转化的中间物或产物难以脱附,会阻滞反应的进一步进行。应考虑反应物在催化剂上形成的吸附键强度应适中。吸附键强度太弱164电极结构与制备工艺1)电极结构第一层:疏水碳纸,通常称支撑层浸入40%~50%的聚四氟乙烯乳液后,孔隙率降至60%左右,平均孔径为12.5m。支撑层的厚度为0.2~0.4mm,它的作用是支撑催化层,同时起收集和传导电流的作用。第二层:整平层(扩散层),为便于在支撑层上制备催化层,在炭纸表面制备一层由X-72型炭和50%聚四氟乙烯乳液组成的混合物,厚度为1~2m。第三层:催化层,在扩散层上覆盖由铂/炭电催化剂+聚四氟乙烯乳液(30%~50%)的催化层,厚度约50m。一般而言,电极制备好后须经过滚压处理,压实后在320-340度烧结,以增强电极防水性。2)制备工艺扩散层:碳纸PTFE浸泡法整平层与催化层:喷涂法或刮膜法(类似于锂离子电池极片拉浆)电极结构与制备工艺1)电极结构165双极板双极板必须满足下述功能要求:①实现单池之间的电的联结,因此,它必须由导电良好的材料构成。②将燃料(如氢)和氧化剂(如氧)通过由双极板、密封件等构成的共用孔道,经各个单池的进气管导入各个单池,并由流场均匀分配到电极各处。③因为双极板两侧的流场分别是氧化剂与燃料通道,所以双极板必须是无孔的;由几种材料构成的复合双极扳,至少其中之一是无孔的,实现氧化剂与燃料的分隔。双极板166④构成双极板的材料必须在阳极运行条件下(一定的电极电位、氧化剂、还原剂等)抗腐蚀,以达到电池组的寿命要求,一般为几千小时至几万小时。⑤因为PEMFC电池组效率一般在50%左右,双权板材料必须是热的良导体,以利于电池组废热的排出。为降低电池组的成本,制备双极板的材料必须易于加工(如加工流场),最优的材料是适于用批量生产工艺加工的材料。至今,制备双极板广泛采用的材料是石墨和金属板。④构成双极板的材料必须在阳极运行条件下(一定的电极电位、氧化1671.石墨双极板厚度为2-5mm,机加工共用通道,利用电脑刻绘机在其表面上加工流场。这种工艺费时,价高,不易批量生产。采用蛇形流场的石墨双极板图1.石墨双极板采用蛇形流场的石墨双极板图1682.模铸双极板为降低成本和批量生产,发展了采用模铸法制备带流场的双极板。方法是将石墨粉和热塑性树脂均匀混合,有时需加入催化剂等,在一定温度下冲压成型,压力高达几MPa或几十MPa。该技术尚在发展之中。采用这种模铸法制备双极板,由于树脂未实现石墨化,双极板的本相电阻要高于石墨双极板,而且双极板与电极扩散层的接触电阻也比纯石墨大。但改进联合树脂材料、与石墨粉配比及模铸条件,可以减小模铸板的这两种电阻。2.模铸双极板1693.金属双极板用薄金属板制备双极板的优点是可批量生产,如采用冲压技术制备各种结构的双极板。这是目前世界各国研发的重点之一。其难点:在PEMFC工作条件下的抗腐蚀问题(氧化,还原,一定的电位和弱酸性电解质下的稳定性);与扩散层(碳纸)的接触电阻大。抗腐蚀的方法之一是用改变合金组成与制备工艺的方法。3.金属双极板1704.复合双极板采用廉价的多孔石墨板制备流场。由于这层多孔石墨流场板在电池工作时充满水,既有利于膜的保湿,也阻止反应气与作为分隔板的薄金属板(0.1-0.2mm)接触,因而减缓了它的腐蚀。这种复合双极板技术的关键是尽量减少多孔石墨流场板与薄金属分隔板间的接触电阻。4.复合双极板171流场作用是引导反应气流动方向,确保反应气均匀分配到电极各处,经扩散层到达催化层参与电化学反应。流场主要有:网状,多孔,平行沟槽,蛇形和交指状等。流场设计是至关重要的,而且很多是高度保密的专有技术。流场172平行沟槽流场平行沟槽流场173交指状流场交指状流场174多孔型流场多孔型流场175网状流场网状流场176单通道蛇形流场单通道蛇形流场177多通道蛇形流场多通道蛇形流场178单电池它是构成电池组的基本单元,电池组的设计要以单电池的实验数据为基础。各种关键材料的性能与寿命最终要通过单电池实验的考核。1.膜电极对于PEMFC,由于膜为高分子聚合物,仅靠电池组的组装力,不但电极与膜之间的接触不好,而且质子导体也无法进入多孔气体电极的内部。为了实现电极的立体化,需向多孔气体扩散电极内部加入质子导体(如全氟磺酸树脂),同时为改善电极与膜的接触,将已加入全氟磺酸树脂的阳极,隔膜(全氟磺酸膜)和已加入全氟磺酸树脂的阴极压合在一起,形成了“三合一”组件(MEA)单电池179燃料电池工作原理、分类与组成课件180电池组电池组的主体为MEA,双极板及相应可兼作电流导出板,为电池组的正极;另一端为阳单极板,也可兼作电流导入板,为电池组的负极,与这两块导流板相邻的是电池组端板,也称为夹板。在它上面除布有反应气与冷却液进出通道外,周围还布置有一定数目的圆孔,在组装电池时,圆孔内穿入螺杆,给电池组施加一定的组装力。若两块端板用金属(如不锈钢、铁板、超硬铝等)制作,还需在导流板与端板之间加入由工程塑料制备的绝缘板。电池组181电池组电池组182电池组电池组183电池组设计原则效率和比功率分别是电池组在标定功率下运行时的能量转化效率和在标定功率下运行时的质量比功率和体积比功率。1)对于民用发电(分散电源或家庭电源),能量转化效率更为重要,而对体积比功率与质量比功率的要求次之。故依据用户对电池组工作电压的要求确定串联的单电池数目时,一般选取单电池电压为0.70~0.75V。这样在不考虑燃料利用率时,电池组的效率可达56%~60%。再依据单电池的实验V-A特性曲线,确定电池组工作电流密度,进而依据用户对电池组标定功率的要求确定电极的工作面积。在确定工作面积时,还应考虑电池系统的内耗。电池组设计原则1842)对于电动车发动机用的PEMFC和各种移动动力源,则对电池组的质量比功率和体积比功率的要求更高些。为提高电池组的质量比功率和体积比功率,在电池关键材料与单电池性能已定时,只有提高电池工作电流密度,此时一般选取单电池工作电压为0.60-0.65V,再依据用户对电池工作电压的要求确定单电池数目,进而依据V-A特性曲线确定电极的工作面积。2)对于电动车发动机用的PEMFC和各种移动动力源,则对电池185流场对PEMFC电池组至关重要,而且与反应气纯度、电池系统的流程密切相关。因此,在设计电池组结构时,需根据具体条件,如反应气纯度、流程设计(如有无尾气回流,如有,回流比是多少等)进行化工设计,各项参数均要达到设计要求,并经单电池实验验证可行后方可确定。流场对PEMFC电池组至关重要,而且与反应气纯度、电池系统的186电池组密封要求是按照设计的密封结构,在电池组组装力的作用下,达到反应气、冷却液不外漏,燃料、氧化剂和冷却液不互窜。电池组密封187电池组的水管理由于膜的质子(离子)导电性与膜的润湿状态密切相关,因此保证膜的充分湿润性是电池正常运行的关键因素之一。PEMFC的工作温度低于100℃,电池内生成的水是以液态形式存在,一般是采用适宜的流场,确保反应气在流场内流动线速度达到一定值(如几米每秒以上),依靠反应气吹扫出电池反应生成的水。但大量液态水的存在会导致阴极扩散层内氧传质速度的降低。因此,如何保证适宜的操作条件,使生成水的90%以上以气态水形式排出。这样不但能增加氧阴极气体扩散层内氧的传质速度,而且还会减少电池组废热排出的热负荷。电池组的水管理188燃料电池工作原理、分类与组成课件189质子交换膜内的水传递过程有三种传递方式:1)电迁移:水分子与H+一起,由膜的阳极侧向阴极侧迁移。电迁移的水量与电池工作电流密度和质子的水合数有关。2)浓差反扩散:因为PEMFC为酸性燃料电池,水在阴极生成,因此,膜阴极侧水浓度高于阳极侧,在水浓差的作用下,水由膜的阴极侧向阳极侧反扩散。反扩散迁移的水量与水的浓度梯度和水在质子交换膜内的扩散系数成正比。燃料电池工作原理、分类与组成课件1903)压力迁移:在PEMFC的运行过程中,一般使氧化剂压力高于还原剂的压力,在反应气压力梯度作用下,水由膜的阴极侧向阳极侧传递,即压力迁移。压力迁移的水量与压力梯度和水在膜中的渗透系数成正比,而与水在膜中的粘度成反比。3)压力迁移:在PEMFC的运行过程中,一般使氧化剂压力高于191电池的排水对于燃料电池,常用排水方法有动态排水与静态排水两种。(1)动态排水:动态排水法又称氢循环排水法。其原理是用泵循环氢气,将水蒸气带出电池,然后在冷凝器中将水蒸气冷疑,回收氢气。由于水蒸气的气相扩散和蒸发与冷凝速度均较快,因此,排水速度由氢循环量、电堆工作温度和冷凝器工作温度确定。(2)静态排水:原理是在氢气腔背面加一块饱吸KOH的排水膜(该膜内吸饱的KOH电解液浓度比电解质隔膜内的要浓一些.膜的另一侧是水腔),在多孔阳极内部电化学反应生成的水汽化,靠浓差迁移至排水膜燃料腔一侧并冷凝,然后靠浓差迁移通过排水膜,电池的排水192在排水膜水腔侧减压蒸发,借压差进入冷凝器冷凝、回收。与动态排水一样,因水的蒸发、冷凝与气相扩散速度均较快,所以整个排水速度由水在排水膜内迁移速度决定。静态排水控制条件比动态排水少,而且不受气流分布影响,没有运动部件,但是,它要在电池堆内增加一个水腔与一块排水膜,不仅制作工艺复杂,而且必然增加电堆重量。因此,要根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专用产品销售协议样本版B版
- 2024年企业间保密合作合同标准文本版B版
- 2024年商业培训空间租赁协议样本版B版
- 2024办公楼专业管理与服务承包协议范本版B版
- 江南大学《材料力学》2021-2022学年第一学期期末试卷
- 2024个人间借款设备抵押协议标准格式版B版
- 佳木斯大学《动物环境卫生学》2021-2022学年第一学期期末试卷
- 2024年全面物流挂靠运营合作合同
- 暨南大学《概率论与数理统计》2021-2022学年第一学期期末试卷
- 济宁学院《金融学》2021-2022学年第一学期期末试卷
- 2024磐安县青山湾生态葡萄基地葡萄种植收购合同书
- 机台买卖合同模板
- 2024年广东省广州市白云区中考语文一模试卷
- 《我国上市公司财务舞弊探析案例-长园集团为例》14000字(论文)
- 中华人民共和国保守国家秘密法实施条例培训课件
- 2024年低压电工作业(复审)模拟考试题库试卷
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 小学英语“教学评一体化”实施
- 电影音乐欣赏智慧树知到期末考试答案章节答案2024年华南农业大学
- 生物信息学概论智慧树知到期末考试答案章节答案2024年中南大学
- MOOC 思辨式英文写作-南开大学 中国大学慕课答案
评论
0/150
提交评论