版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HypothesisTesting统计学假设检验1HypothesisTesting统计学假设检验1HypothesisTesting9.1 NullandAlternativeHypothesesandErrorsinTesting9.2 zTestsaboutaPopulationwithknowns9.3 tTestsaboutaPopulationwithunknowns2HypothesisTesting9.1 NullandHypothesistesting-1Researchersusuallycollectdatafromasampleandthenusethesampledatatohelpanswerquestionsaboutthepopulation.Hypothesistestingisaninferentialstatisticalprocessthatuseslimitedinformationfromthesampledataastoreachageneralconclusionaboutthepopulation.3Hypothesistesting-1ResearcherAhypothesistestisaformalizedprocedurethatfollowsastandardseriesofoperations.Inthisway,researchershaveastandardizedmethodforevaluatingtheresultsoftheirresearchstudies.4Hypothesistesting-2Ahypothesistestisaformali5Thebasicexperimentalsituationforusinghypothesistestingispresentedhere.Itisassumedthattheparameterisknownforthepopulationbeforetreatment.Thepurposeoftheexperimentistodeterminewhetherornotthetreatmenthasaneffect.Isthepopulationmeanaftertreatmentthesameasordifferentfromthemeanbeforetreatment?Asampleisselectedfromthetreatedpopulationtohelpanswerthisquestion.5ThebasicexperimentalsituatProceduresofhypothesis-testing61.
First,westateahypothesisaboutapopulation.Usuallythehypothesisconcernsthevalueofapopulationparameter.Forexample,wemighthypothesizethatthemeanIQforUICstudentsism=110.2.
Next,weobtainarandomsamplefromthepopulation.Forexample,wemightselectarandomsampleofn=100UICstudents.3.
Finally,wecomparethesampledatawiththehypothesis.Ifthedataareconsistentwiththehypothesis,wewillconcludethatthehypothesisisreasonable.Butifthereisabig
discrepancybetweenthedataandthehypothesis,wewilldecidethatthehypothesisiswrong.Proceduresofhypothesis-testiNullandAlternativeHypothesesThenullhypothesis,denotedH0,isastatementofthebasicpropositionbeingtested.Itgenerallyrepresentsthestatusquo(astatementof“noeffect”or“nodifference”,orastatementofequality)andisnotrejectedunlessthereisconvincingsampleevidencethatitisfalse.The(scientificor)alternativehypothesis,denotedHa(orH1),isanalternative(tothenullhypothesis)statementthatwillbeacceptedonlyifthereisconvincingsampleevidencethatitistrue.Thesetwohypothesesaremutuallyexclusiveandexhaustive.7NullandAlternativeHypothese8Determinedbythelevelofsignificanceorthealphalevel8Determinedbythelevelofsi9Alphalevelof.05--theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.Z9Alphalevelof.05--thepro10Thelocationsofthecriticalregionboundariesforthreedifferentlevelsofsignificance10Thelocationsofthecritica11Example:Alcoholappearstobeinvolvedinavarietyofbirthdefects,includinglowbirthweightandretardedgrowth.Aresearcherwouldliketoinvestigatetheeffectofprenatalalcoholonbirthweight.Arandomsampleofn=16pregnantratsisobtained.Themotherratsaregivendailydosesofalcohol.Atbirth,onepupisselectedfromeachlittertoproduceasampleofn=16newbornrats.Theaverageweightforthesampleis15grams.Theresearcherwouldliketocomparethesamplewiththegeneralpopulationofrats.Itisknownthatregularnewbornrats(notexposedtoalcohol)haveanaverageweightofm=18grams.Thedistributionofweightsisnormalwithsd=4.11Example:12H0:µ=18
12H0:µ=18131.StatethehypothesesThenullhypothesisstatesthatexposuretoalcoholhasnoeffectonbirthweight.Thealternativehypothesisstatesthatalcoholexposuredoesaffectbirthweight.2.SelecttheLevelofSignificance(alpha)levelWewilluseanalphalevelof.05.Thatis,wearetakinga5%riskofcommittingaTypeIerror,or,theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.3.Setthedecisioncriteriabylocatingthecriticalregion131.Statethehypotheses14Alphalevelof.05--theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.Z14Alphalevelof.05--thepr154.COLLECTDATAandCOMPUTESAMPLESTATISTICSThesamplemeanisthenconvertedtoaz-score,whichisourteststatistic.5.ArriveatadecisionRejectthenullhypothesis
154.COLLECTDATAandCOMPUTEHypothesisTestingHypothesisTestingAlternativeHypothesisH1:AstatementthatisacceptedifH0isfalseWithout“=”signSay,“2”or“<2”NullHypothesisH0:
Astatementaboutthevalueofapopulationparameter(and).With“=”signSay,“=2”or“2”17Step1:Statethenullandalternate hypothesesAlternativeHypothesisH1:NulThreepossibilitiesregardingmeansH0:
m=m0H1:
m=m0H0:
m
<
m0H1:
m>m0H0:
m
>
m0H1:
m<m0Thenullhypothesisalwayscontainsequality.3hypothesesaboutmeans18aconstantStep1:Statethenullandalternate hypothesesThreepossibilitiesregardingStepTwo:SelectaLevelofSignificance,MeasuresthemaxprobabilityofrejectingatruenullhypothesisH0
isactuallytrue
butyourejectit(falsepositive).H0isfalsebutyouacceptit(falsenegative).LevelofSignificance,TypeIErrorTypeIIError19
toohighLevelofSignificance:themaximumallowableprobabilityofmakingatypeIerrorStepTwo:SelectaLevelofS
Researcher
NullAcceptsRejectsHypothesisHo
HoHoistrueHoisfalseCorrectdecisionTypeIerror(<a)TypeIIErrorCorrectDecisionRisktable20StepTwo:SelectaLevelofSignificance,
Step3:SelecttheteststatisticAteststatisticisusedtodeterminewhethertheresultoftheresearchstudy(thedifferencebetweenthesamplemeanandthepopulationmean)ismorethanwouldbeexpectedbychancealone.WewillonlyconsiderstatisticsZort,forthetimebeing.Sinceourhypothesisisaboutthepopulationmean.21Step3:SelecttheteststatisTestStatisticThetermteststatisticsimplyindicatesthatthesamplemeanisconvertedintoasingle,specificstatisticthatisusedtotestthehypotheses.Thez-scorestatisticthatisusedinthehypothesistestisthefirstspecificexampleofwhatiscalledateststatistic.Wewillintroduceseveralotherteststatisticsthatareusedinavarietyofdifferentresearchsituationslater.22TestStatisticThetermteststRejecttheH0if
Computedz
>CriticalzComputedz
<-CriticalzDecisionRuleH0:0Computedz
>CriticalzOr
Computedz<-CriticalzH0:0H0:=023DeterminedbylevelofsignificanceStep4:Formulatethedecisionrule.RejecttheH0ifComputedzCriticalvalue:
ThedividingpointbetweentheregionwhereH0isrejectedandtheregionwhereH0isaccepted,determinedbylevelofsignificance.Fromthetable,withstatisticz,onetailedtestandsignificancelevel0.05,wefoundthecriticalvalue1.65.24H0:0Rejectifz
>CriticalzCriticalvalue:ThedividingpOne-TailedTestofSignificance.IfH0:0istrue,itisveryunlikelythatthecomputedzvalueissolarge.25One-TailedTestofSignificanc26H0:0Computedz
<-CriticalzRejecttheH0ifIfH0:0istrue,itisveryunlikelythatthecomputedzvalue(fromthesamplemean)issosmall.26H0:0Computedz<-IfH0:=0istrue,itisveryunlikelythatthecomputedzvalueisextremelylargeorsmall.Two-TailedTestsofSignificance27IfH0:=0istrue,itisvStep5:Makeadecision.28Reject!Accept!Step5:Makeadecision.28RejeAninsurancecompanyisreviewingitscurrentpolicyrates.Whenoriginallysettingtheratestheybelievedthattheaverageclaimamountwas$1,800.Theyareconcernedthatthetruemeanisactuallyhigherthanthis,becausetheycouldpotentiallylosealotofmoney.Theyrandomlyselect40claims,andcalculateasamplemeanof$1,950.Assumingthatthepopulationstandarddeviationofclaimsis$500,andsetlevelofsignificance
=0.05,testtoseeiftheinsurancecompanyshouldbeconcerned.29Step1:SetthenullandalternativehypothesesExampleOneTailed(UpperTailed)Aninsurancecompanyisreview30Step2:CalculatetheteststatisticExampleOneTailed(UpperTailed)Step3:SetRejectionRegionLookingatthepicturebelow,weneedtoputallofalphaintherighttail.Thus,R:Z>1.9630Step2:Calculatethetests31Step4:ConcludeWecanseethatz=1.897<1.96,thusourteststatisticisnotintherejectionregion.Thereforewefailtorejectthenullhypothesis.
Wecannotconcludeanythingstatisticallysignificantfromthistest,andcannottelltheinsurancecompanywhetherornottheyshouldbeconcernedabouttheircurrentpolicies.ExampleOneTailed(UpperTailed)31Step4:ConcludeExampleOne32Tryingtoencouragepeopletostopdrivingtocampus,theuniversityclaimsthatonaverageittakespeople30minutestofindaparkingspaceoncampus.Johndoesnotthinkittakessolongtofindaspot.Hecalculatedthemeantimetofindaparkingspaceoncampusforthelastfivetimesandfoundittobe20minutes.Assumingthatthetimeittakestofindaparkingspotisnormallydistributed,andthatthepopulationstandarddeviation=6minutes,performahypothesistestwithlevelofsignificancealpha=0.10toseeifhisclaimiscorrect.Example:OneTailed(LowerTailed)32Tryingtoencouragepeoplet33Step1:SetthenullandalternativehypothesesExample:OneTailed(LowerTailed)Step2:CalculatetheteststatisticStep3:SetRejectionRegionLookingatthepicturebelow,weneedtoputallofalphainthelefttail.Thus,R:Z<-1.2833Step1:Setthenullandalt34Example:OneTailed(LowerTailed)Step4:ConcludeWecanseethatz=-3.727<-1.28,thusourteststatisticisintherejectionregion.Thereforewerejectthenullhypothesisinfavorofthealternative.Weconcludethatthemeanissignificantlylessthan30,thusJohnhasproventhatthemeantimetofindaparkingspaceislessthan30.34Example:OneTailed(LowerT35Example:TwoTailedAsampleof40salesreceiptsfromagrocerystorehasmean
=$137and
populationstandarddeviation
=$30.2.Usethesevaluestotestwhetherornotthemeaninsalesatthegrocerystorearedifferentfrom$150withlevelofsignificancealpha=0.01.Step1:SetthenullandalternativehypothesesStep2:Calculatetheteststatistic35Example:TwoTailedAsample36Example:TwoTailedStep3:SetRejectionRegionLookingatthepicturebelow,weneedtoputhalfofalphainthelefttail,andtheotherhalfofalphaintherighttail.Thus, R:Z<-2.58orZ>2.58Step4:ConcludeWeseethatZ=-2.722<-2.58,thusourteststatisticisintherejectionregion.Thereforewerejectthenullhypothesisinfavorofthealternative.Wecanconcludethatthemeanissignificantlydifferentfrom$150,thusIhaveproventhatthemeansalesatthegrocerystoreisnot$150.36Example:TwoTailedStep3:SExample:creditmanagerLisa,thecreditmanager,wantstocheckifthemeanmonthlyunpaidbalanceismorethan$400.Thelevelofsignificanceshesetis.05.Arandomcheckof172unpaidbalancesrevealedthesamplemeantobe$407.Thepopulationstandarddeviationisknowntobe$38.ShouldLisaconcludethatthepopulationmeanisgreaterthan$400,orisitreasonabletoassumethatthedifferenceof$7($407-$400)isduetochance?(atconfidencelevel0.05)37Example:creditmanagerLisa,tStep1H0:µ<$400H1:µ>$400Step2Thesignificancelevelis.05.Step3Sinceisknown,wecanfindtheteststatisticz.Step4H0isrejectedifz>1.65(since=0.05)Step5Makeadecisionandinterprettheresults.(Nextpage)Example:Lisa,thecreditmanager38Step1Step2Step3Step4StepThep-valueis.0078foraone-tailedtest.(reftoinformalans.)Computedzof2.42>Criticalz
of1.65,pof.0078<aof.05.
RejectH0.Step5Makeadecisionandinterprettheresults.Wecanconcludethatthemeanunpaidbalanceisgreaterthan$400.39Thep-valueis.0078foraoneLimitationofz-scoresinhypothesistestingThelimitationofz-scoresinhypothesistestingisthatthepopulationstandarddeviation(orvariance)mustbeknown.Whatifyoudon’tknowtheµand
ofthepopulation?Answer:usethesamplevariabilityinstead40Limitationofz-scoresinhypo41Samplevariances2=sumofsquaresofdeviation/(n-1) =sumofsquareofdeviations/df =SS/dfSinceyoumustknowthesamplemeanbeforeyoucancomputesamplevariance,thisplacesarestrictiononsamplevariabilitysuchthatonlyn-1scoresinasamplearefreetovary.Thevaluen-1iscalledthedegreesoffreedom(ordf)forthesamplevariance.41SamplevarianceSinceyoumu42Ifyouselectallthepossiblesamplesofaparticularsize(n),thesetofallpossibletstatisticswillformatdistribution.ZstatistictstatisticUnknown
Goodfor: (i)largesamplen>30,withtheunderlyingdistributionmayormaynotbeNormal (ii)smallsamplen<30withtheunderlyingdistributionisNormal42Ifyouselectallthepossib43Distributionsofthetstatisticfordifferentvaluesofdegreesoffreedomarecomparedtoanormaldistribution.43Distributionsofthetstati44444545464647Thetdistributionwithdf=3.Notethat5%ofthedistributionislocatedinthetailst>2.353andt<2.353.47Thetdistributionwithdf=ThelabelonFries’Catsupindicatesthatthebottlecontains16ouncesofcatsup.Asampleof36bottlesfromlasthour’sproductionrevealedameanweightof16.12ouncesperbottleandasamplestandarddeviationof0.5ounces.Atthe0.05significancelevel,testiftheprocessoutofcontrol?Thatis,canweconcludethatthemeanamountperbottleisdifferentfrom16ounces?48ThelabelonFries’CatsupindStep1Statethenullandthealternativehypotheses
H0:m=16 H1:m=16Step3Sincethesamplesizeislargeenoughandthepopulations.d.isunknown,wecanusetheteststatisticist.Step2Selectthesignificancelevel.Thesignificancelevelis.05.Step4Statethedecisionrule.RejectH0ifz>1.96
orz<-1.96(since=0.05)Step5Makeadecisionandinterprettheresults.(Nextpage)49Step1Step3Step2Step4SteComputedzof1.44<Criticalz
of1.96,pof.1499>aof.05,Donotrejectthenullhypothesis.Thep-valueis.1499foratwo-tailedtest.Step5:
Makeadecisionandinterprettheresults.Wecannotconcludethemeanisdifferentfrom16ounces.50Computedzof1.44Thep-valueTheteststatisticisthetdistribution.TestingforaPopulationMean:Unknown(Population)standarddeviation,Smallsample.ButtheunderlyingdistributionisNormalThecriticalvalueoftisdeterminedbyitsdegreesoffreedomwhichisequalton-1.51TheteststatisticisthetdiThecurrentrateforproducing5ampfusesataElectricCo.is250perhour.Anewmachinehasbeenpurchasedandinstalled.Accordingtothesupplier,theproductionratearenormallydistributed.Asampleof10randomlyselectedhoursfromlastmonthrevealedthatthemeanhourlyproductionwas256units,withasamples.d.of6perhour.
Atthe0.05significancelevel,testifthenewmachineisfasterthantheoldone?52ThecurrentrateforproducingStep1Statethenullandalternatehypotheses.H0:µ<
250H1:µ>250Step2
Selectthelevelofsignificance.Itis.05.Step3Sincetheunderlyingdistributionisnormal,sisunknown,usethetdistribution.Step4Statethedecisionrule.degreesoffreedom=10–1=9.RejectH0ift>1.83353Step1Step2Step3Step4Computedtof3.162>Criticalt
of1.833pof.0058<alphaof.05RejectHoThep-valueis0.0058.(obtainedfromt,needasoftwaretofindit.)Step5Makeadecisionandinterprettheresults.Themeannumberoffusesproducedismorethan250perhour.54Ifthep-valueislessthanalpha,thenrejectthenullhypothesis.Computedtof3.162Thep-valuAmountoftimeUICstudentsspendinlibraryfromsurveyMean41.72minutesStandarddeviation40.179minutesNumberofcases294Nationalsurveyfindsuniversitylibraryusersspendmeanof38minutesIspopulationmeanforUICLibraryusersdifferentfromnationalmean?Example:One-samplehypothesistestformeanAmountoftimeUICstudentsspNullhypothesis
H0:μ=μ0
μ=38
Alternativeorresearchhypothesis
Ha:μ≠μ0
μ≠38Step1.HypothesesNullhypothesis
H0:μ=μ0 Step2.LevelofsignificanceProbabilityoferrorinmakingdecisiontorejectnullhypothesisForthistestchoose
α=0.05Step2.LevelofsignificancePStep3.Teststatisticn=294sousecriticaltvaluesfromtableforinfinity.Step3.Teststatisticn=294CannotrejectthenullhypothesisCannotconcludethatpopulationmeanisdifferentfrom38minutes4.Decision95%confidenceIntervalinthisexample:E=1.96* =4.59[41.72-4.59,41.72+4.59]or[37.13,46.31]CannotrejectthenullhypotheConfidenceintervalfortimespentinlibraryis37.13<μ<46.31Hypothesizedvalueof38minutesfallswithinconfidenceintervalThereforewecannotsaythatpopulationmeanisnotequalto38minutes,cannotrejectthenullhypothesisConfidenceintervalandhypothesistestforlibraryexampleConfidenceintervalfortimesForparametersforasinglesample…One-samplehypothesistestinvolvescomparisonwithpre-specifiedvalue…Whichisoftenartificial…SoconfidenceintervalmostappropriateforreportingresultsForparametersfortwosamples…DifferenceinparametersisofinterestHypothesistestexaminesdirectlyConfidenceintervallessintuitiveUsingconfidenceintervalsorhypothesistestsForparametersforasinglesaConfidenceinterval
orHypothesis
test?Hypothesistestsarebetterwhenthechiefissueistomakeayes/nodecisionaboutwhetherapatternexistsinapopulation.Confidenceintervalsarebetterwhenthechiefissueistomakeabestguessofapopulationparameter.Confidenceinterval
orHypoth63Whenreadingascientificjournal,youtypicallywillnotbetoldexplicitlythattheresearcherevaluatedthedatausingaz-scoreasateststatisticwithanalphalevelof.05.Norwillyoubetoldthat“thenullhypothesisisrejected.”Instead,youwillseeastatementsuchas:Thetreatmentwithmedicationhadasignificanteffectonpeople’sdepressionscores,z=3.85,p<.05.Letusexaminethisstatementpiecebypiece.First,whatismeantbythetermsignificant?Instatisticaltests,thiswordindicatesthattheresultisdifferentfromwhatwouldbeexpectedduetochance.Asignificantresultmeansthatthenullhypothesishasbeenrejected.Thatis,thedataaresignificantbecausethesamplemeanfallsinthecriticalregionandisnotwhatwewouldhaveexpectedtoobtainifH0weretrue.Next,whatisthemeaningofz=3.85?Thezindicatesthataz-scorewasusedastheteststatistictoevaluatethesampledataandthatitsvalueis3.85.63Whenreadingascientificjo64Finally,whatismeantbyp<.05?Thispartofthestatementisaconventionalwayofspecifyingthealphalevelthatwasusedforthehypothesistest.Morespecifically,wearebeingtoldthatanoutcomeasextremeastheresultoftheexperimentwouldoccurbychancewithaprobability(p)thatislessthan.05(alpha)ifH0weretrue.64Finally,whatismeantbyp<65IncircumstanceswherethestatisticaldecisionistofailtorejectH0,thereportmightstatethatTherewasnoevidencethatthemedicationhadaneffectondepressionscores,z=1.30,p>.05.Inthiscase,wearesayingthattheobtainedresult,z=1.30,isnotunusual(notinthecriticalregion)andisrelativelylikelytooccurbychance(theprobabilityisgreaterthan.05).Thus,H0wasnotrejected.65IncircumstanceswherethesUsingthep-ValueinHypothesisTestingIfthep-Valuea,H0cannotberejected.Ifthep-Value<a,H0isrejected.p-valuedoesnotonlytelluswhetherweshouldrejectH0,butalsotellushowconfidentwearetorejectit.66Samplemeansthatfallinthecriticalregion(shadedareas)haveaprobabilitylessthanalpha.H0shouldberejected.Usingthep-ValueinHypothesi67MoreExample:Totesttheeffectivenessofeye-spotpatternsindeterringpredation,asampleofn=16insectivorousbirdsisselected.Theanimalsaretestedinaboxthathastwoseparatechambers(seefigure).Thebirdsarefreetoroamfromonechambertoanotherthroughadoorwayinapartition.Onthewallofonechamber,twolargeeye-spotpatternshavebeenpainted.Theotherchamberhasplainwalls.Thebirdsaretestedoneatatimebyplacingtheminthedoorwayinthecenteroftheapparatus.Eachanimalisleftintheboxfor60minutes,andtheamountoftimespentintheplainchamberisrecorded.Supposethatthesampleofn=16birdsspentanaveragemof39minutesintheplainside,withSS=540.Canweconcludethateye-spotpatternshaveaneffectonbehavior?Notethatwehavenoinformationaboutthepopulationvariance.67MoreExample:Totesttheef68Step1:Statethehypotheses:H0:µplainside=30minutesStep2:Locatethecriticalregion.Theteststatisticisatstatisticbecausethepopulationvarianceisnotknown. df=16-1=15Foratwo-tailedtestatthe.05levelofsignificanceandwith8degreesoffreedom,thecriticalregionconsistsoftvaluesgreaterthan+2.131orlessthan-2.131Step3:Calculatetheteststatistic s2=SS/df=540/15=36 sm=sqrt(s2/16)=1.5
thetstatistict=(39-30)/1.5=6Step4:Makeadecision–rejectH068Step1:Statethehypotheses69Thecriticalregioninthetdistributionforalpha=.05anddf=15.69Thecriticalregioninthet70HYPOTHESISTESTINGfor:populationproportions70HYPOTHESISTESTINGfor:Example:Surveydataonattitudestoward
incomeinequalityImaginethatwewouldliketofindoutifUSadultshadsomenetopiniononthefollowingissue.“Doyouthinkitshouldorshouldnotbethegovernment’sresponsibilitytoreduceincomedifferencesbetweentherichandthepoor?”Score Response Number1 shouldbe 5910 shouldnotbe 636Totaln=1227Example:SurveydataonattituSurveydataonattitudestoward
incomeinequality0:Assumptions:wewillbedoingalarge-sampletestforpopulationproportions.Toperformthistest,wemustassumethat…Samplesizeislargeenoughthatnp(1-p)>10
ThesampleisarandomsampleofsomesortThevariableisadiscreteinterval-scalevariable,whichisautomaticallytrueforpopulationproportions.SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality1:Hypothesis:
letdenotethepopulationproportionwhofavorgovernmentinterventiontoalleviateincomeinequality.Ournullhypothesisisthatthepopulation,onaverage,neithersupportsnoropposesgovernmentintervention.Ho:=0.5ThealternatehypothesisisthenHA:0.5SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality2:TestStatistic:Forannof1227respondents,wecalculatethefollowingstatistics:P =n(yes)/n(total)=591/1227=.4817σ0 =SQRT(o(1-o))=.5SE =σ0/SQRT(n)=.01427z =(P-o
)/s.e.. =(.4817-.500)/.01427. =-1.282Thez-statisticistheteststatisticofinterestinalarge-sampletestofapopulationproportion.SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality3.Pickα=0.05&determinecriticalz-1.282SurveydataonattitudestowarHypothesisTesting统计学假设检验76HypothesisTesting统计学假设检验1HypothesisTesting9.1 NullandAlternativeHypothesesandErrorsinTesting9.2 zTestsaboutaPopulationwithknowns9.3 tTestsaboutaPopulationwithunknowns77HypothesisTesting9.1 NullandHypothesistesting-1Researchersusuallycollectdatafromasampleandthenusethesampledatatohelpanswerquestionsaboutthepopulation.Hypothesistestingisaninferentialstatisticalprocessthatuseslimitedinformationfromthesampledataastoreachageneralconclusionaboutthepopulation.78Hypothesistesting-1ResearcherAhypothesistestisaformalizedprocedurethatfollowsastandardseriesofoperations.Inthisway,researchershaveastandardizedmethodforevaluatingtheresultsoftheirresearchstudies.79Hypothesistesting-2Ahypothesistestisaformali80Thebasicexperimentalsituationforusinghypothesistestingispresentedhere.Itisassumedthattheparameterisknownforthepopulationbeforetreatment.Thepurposeoftheexperimentistodeterminewhetherornotthetreatmenthasaneffect.Isthepopulationmeanaftertreatmentthesameasordifferentfromthemeanbeforetreatment?Asampleisselectedfromthetreatedpopulationtohelpanswerthisquestion.5ThebasicexperimentalsituatProceduresofhypothesis-testing811.
First,westateahypothesisaboutapopulation.Usuallythehypothesisconcernsthevalueofapopulationparameter.Forexample,wemighthypothesizethatthemeanIQforUICstudentsism=110.2.
Next,weobtainarandomsamplefromthepopulation.Forexample,wemightselectarandomsampleofn=100UICstudents.3.
Finally,wecomparethesampledatawiththehypothesis.Ifthedataareconsistentwiththehypothesis,wewillconcludethatthehypothesisisreasonable.Butifthereisabig
discrepancybetweenthedataandthehypothesis,wewilldecidethatthehypothesisiswrong.Proceduresofhypothesis-testiNullandAlternativeHypothesesThenullhypothesis,denotedH0,isastate
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市安全员C证考试(专职安全员)题库附答案
- 贵州城市职业学院《中级财务会计Ⅱ》2023-2024学年第一学期期末试卷
- 贵州财经大学《面料认知与再造》2023-2024学年第一学期期末试卷
- 贵阳学院《音乐作品分析(一)》2023-2024学年第一学期期末试卷
- 2025黑龙江建筑安全员-C证(专职安全员)考试题库
- 贵阳信息科技学院《东方文学专题研究》2023-2024学年第一学期期末试卷
- 2025湖北省安全员B证(项目经理)考试题库
- 2025年湖南省建筑安全员知识题库附答案
- 广州幼儿师范高等专科学校《灯光造型》2023-2024学年第一学期期末试卷
- 广州新华学院《接口自动化》2023-2024学年第一学期期末试卷
- 2021-2022学年第二学期《大学生职业发展与就业指导2》学习通超星期末考试答案章节答案2024年
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷代号:1141)
- 医院关于不合理医疗检查专项治理自查自查自纠总结
- 危险化学品水路运输安全管理规定
- 教育中的心理效应
- 考古绘图(课堂PPT)
- PE管热熔对接施工方案完整
- 全国各地木材平衡含水率年平均值
- DB37∕T 5001-2021 住宅工程外窗水密性现场检测技术规程
- 电气化铁路有关人员电气安全规则
- 大连公有住房规定
评论
0/150
提交评论