版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HypothesisTesting统计学假设检验1HypothesisTesting统计学假设检验1HypothesisTesting9.1 NullandAlternativeHypothesesandErrorsinTesting9.2 zTestsaboutaPopulationwithknowns9.3 tTestsaboutaPopulationwithunknowns2HypothesisTesting9.1 NullandHypothesistesting-1Researchersusuallycollectdatafromasampleandthenusethesampledatatohelpanswerquestionsaboutthepopulation.Hypothesistestingisaninferentialstatisticalprocessthatuseslimitedinformationfromthesampledataastoreachageneralconclusionaboutthepopulation.3Hypothesistesting-1ResearcherAhypothesistestisaformalizedprocedurethatfollowsastandardseriesofoperations.Inthisway,researchershaveastandardizedmethodforevaluatingtheresultsoftheirresearchstudies.4Hypothesistesting-2Ahypothesistestisaformali5Thebasicexperimentalsituationforusinghypothesistestingispresentedhere.Itisassumedthattheparameterisknownforthepopulationbeforetreatment.Thepurposeoftheexperimentistodeterminewhetherornotthetreatmenthasaneffect.Isthepopulationmeanaftertreatmentthesameasordifferentfromthemeanbeforetreatment?Asampleisselectedfromthetreatedpopulationtohelpanswerthisquestion.5ThebasicexperimentalsituatProceduresofhypothesis-testing61.
First,westateahypothesisaboutapopulation.Usuallythehypothesisconcernsthevalueofapopulationparameter.Forexample,wemighthypothesizethatthemeanIQforUICstudentsism=110.2.
Next,weobtainarandomsamplefromthepopulation.Forexample,wemightselectarandomsampleofn=100UICstudents.3.
Finally,wecomparethesampledatawiththehypothesis.Ifthedataareconsistentwiththehypothesis,wewillconcludethatthehypothesisisreasonable.Butifthereisabig
discrepancybetweenthedataandthehypothesis,wewilldecidethatthehypothesisiswrong.Proceduresofhypothesis-testiNullandAlternativeHypothesesThenullhypothesis,denotedH0,isastatementofthebasicpropositionbeingtested.Itgenerallyrepresentsthestatusquo(astatementof“noeffect”or“nodifference”,orastatementofequality)andisnotrejectedunlessthereisconvincingsampleevidencethatitisfalse.The(scientificor)alternativehypothesis,denotedHa(orH1),isanalternative(tothenullhypothesis)statementthatwillbeacceptedonlyifthereisconvincingsampleevidencethatitistrue.Thesetwohypothesesaremutuallyexclusiveandexhaustive.7NullandAlternativeHypothese8Determinedbythelevelofsignificanceorthealphalevel8Determinedbythelevelofsi9Alphalevelof.05--theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.Z9Alphalevelof.05--thepro10Thelocationsofthecriticalregionboundariesforthreedifferentlevelsofsignificance10Thelocationsofthecritica11Example:Alcoholappearstobeinvolvedinavarietyofbirthdefects,includinglowbirthweightandretardedgrowth.Aresearcherwouldliketoinvestigatetheeffectofprenatalalcoholonbirthweight.Arandomsampleofn=16pregnantratsisobtained.Themotherratsaregivendailydosesofalcohol.Atbirth,onepupisselectedfromeachlittertoproduceasampleofn=16newbornrats.Theaverageweightforthesampleis15grams.Theresearcherwouldliketocomparethesamplewiththegeneralpopulationofrats.Itisknownthatregularnewbornrats(notexposedtoalcohol)haveanaverageweightofm=18grams.Thedistributionofweightsisnormalwithsd=4.11Example:12H0:µ=18
12H0:µ=18131.StatethehypothesesThenullhypothesisstatesthatexposuretoalcoholhasnoeffectonbirthweight.Thealternativehypothesisstatesthatalcoholexposuredoesaffectbirthweight.2.SelecttheLevelofSignificance(alpha)levelWewilluseanalphalevelof.05.Thatis,wearetakinga5%riskofcommittingaTypeIerror,or,theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.3.Setthedecisioncriteriabylocatingthecriticalregion131.Statethehypotheses14Alphalevelof.05--theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.Z14Alphalevelof.05--thepr154.COLLECTDATAandCOMPUTESAMPLESTATISTICSThesamplemeanisthenconvertedtoaz-score,whichisourteststatistic.5.ArriveatadecisionRejectthenullhypothesis
154.COLLECTDATAandCOMPUTEHypothesisTestingHypothesisTestingAlternativeHypothesisH1:AstatementthatisacceptedifH0isfalseWithout“=”signSay,“2”or“<2”NullHypothesisH0:
Astatementaboutthevalueofapopulationparameter(and).With“=”signSay,“=2”or“2”17Step1:Statethenullandalternate hypothesesAlternativeHypothesisH1:NulThreepossibilitiesregardingmeansH0:
m=m0H1:
m=m0H0:
m
<
m0H1:
m>m0H0:
m
>
m0H1:
m<m0Thenullhypothesisalwayscontainsequality.3hypothesesaboutmeans18aconstantStep1:Statethenullandalternate hypothesesThreepossibilitiesregardingStepTwo:SelectaLevelofSignificance,MeasuresthemaxprobabilityofrejectingatruenullhypothesisH0
isactuallytrue
butyourejectit(falsepositive).H0isfalsebutyouacceptit(falsenegative).LevelofSignificance,TypeIErrorTypeIIError19
toohighLevelofSignificance:themaximumallowableprobabilityofmakingatypeIerrorStepTwo:SelectaLevelofS
Researcher
NullAcceptsRejectsHypothesisHo
HoHoistrueHoisfalseCorrectdecisionTypeIerror(<a)TypeIIErrorCorrectDecisionRisktable20StepTwo:SelectaLevelofSignificance,
Step3:SelecttheteststatisticAteststatisticisusedtodeterminewhethertheresultoftheresearchstudy(thedifferencebetweenthesamplemeanandthepopulationmean)ismorethanwouldbeexpectedbychancealone.WewillonlyconsiderstatisticsZort,forthetimebeing.Sinceourhypothesisisaboutthepopulationmean.21Step3:SelecttheteststatisTestStatisticThetermteststatisticsimplyindicatesthatthesamplemeanisconvertedintoasingle,specificstatisticthatisusedtotestthehypotheses.Thez-scorestatisticthatisusedinthehypothesistestisthefirstspecificexampleofwhatiscalledateststatistic.Wewillintroduceseveralotherteststatisticsthatareusedinavarietyofdifferentresearchsituationslater.22TestStatisticThetermteststRejecttheH0if
Computedz
>CriticalzComputedz
<-CriticalzDecisionRuleH0:0Computedz
>CriticalzOr
Computedz<-CriticalzH0:0H0:=023DeterminedbylevelofsignificanceStep4:Formulatethedecisionrule.RejecttheH0ifComputedzCriticalvalue:
ThedividingpointbetweentheregionwhereH0isrejectedandtheregionwhereH0isaccepted,determinedbylevelofsignificance.Fromthetable,withstatisticz,onetailedtestandsignificancelevel0.05,wefoundthecriticalvalue1.65.24H0:0Rejectifz
>CriticalzCriticalvalue:ThedividingpOne-TailedTestofSignificance.IfH0:0istrue,itisveryunlikelythatthecomputedzvalueissolarge.25One-TailedTestofSignificanc26H0:0Computedz
<-CriticalzRejecttheH0ifIfH0:0istrue,itisveryunlikelythatthecomputedzvalue(fromthesamplemean)issosmall.26H0:0Computedz<-IfH0:=0istrue,itisveryunlikelythatthecomputedzvalueisextremelylargeorsmall.Two-TailedTestsofSignificance27IfH0:=0istrue,itisvStep5:Makeadecision.28Reject!Accept!Step5:Makeadecision.28RejeAninsurancecompanyisreviewingitscurrentpolicyrates.Whenoriginallysettingtheratestheybelievedthattheaverageclaimamountwas$1,800.Theyareconcernedthatthetruemeanisactuallyhigherthanthis,becausetheycouldpotentiallylosealotofmoney.Theyrandomlyselect40claims,andcalculateasamplemeanof$1,950.Assumingthatthepopulationstandarddeviationofclaimsis$500,andsetlevelofsignificance
=0.05,testtoseeiftheinsurancecompanyshouldbeconcerned.29Step1:SetthenullandalternativehypothesesExampleOneTailed(UpperTailed)Aninsurancecompanyisreview30Step2:CalculatetheteststatisticExampleOneTailed(UpperTailed)Step3:SetRejectionRegionLookingatthepicturebelow,weneedtoputallofalphaintherighttail.Thus,R:Z>1.9630Step2:Calculatethetests31Step4:ConcludeWecanseethatz=1.897<1.96,thusourteststatisticisnotintherejectionregion.Thereforewefailtorejectthenullhypothesis.
Wecannotconcludeanythingstatisticallysignificantfromthistest,andcannottelltheinsurancecompanywhetherornottheyshouldbeconcernedabouttheircurrentpolicies.ExampleOneTailed(UpperTailed)31Step4:ConcludeExampleOne32Tryingtoencouragepeopletostopdrivingtocampus,theuniversityclaimsthatonaverageittakespeople30minutestofindaparkingspaceoncampus.Johndoesnotthinkittakessolongtofindaspot.Hecalculatedthemeantimetofindaparkingspaceoncampusforthelastfivetimesandfoundittobe20minutes.Assumingthatthetimeittakestofindaparkingspotisnormallydistributed,andthatthepopulationstandarddeviation=6minutes,performahypothesistestwithlevelofsignificancealpha=0.10toseeifhisclaimiscorrect.Example:OneTailed(LowerTailed)32Tryingtoencouragepeoplet33Step1:SetthenullandalternativehypothesesExample:OneTailed(LowerTailed)Step2:CalculatetheteststatisticStep3:SetRejectionRegionLookingatthepicturebelow,weneedtoputallofalphainthelefttail.Thus,R:Z<-1.2833Step1:Setthenullandalt34Example:OneTailed(LowerTailed)Step4:ConcludeWecanseethatz=-3.727<-1.28,thusourteststatisticisintherejectionregion.Thereforewerejectthenullhypothesisinfavorofthealternative.Weconcludethatthemeanissignificantlylessthan30,thusJohnhasproventhatthemeantimetofindaparkingspaceislessthan30.34Example:OneTailed(LowerT35Example:TwoTailedAsampleof40salesreceiptsfromagrocerystorehasmean
=$137and
populationstandarddeviation
=$30.2.Usethesevaluestotestwhetherornotthemeaninsalesatthegrocerystorearedifferentfrom$150withlevelofsignificancealpha=0.01.Step1:SetthenullandalternativehypothesesStep2:Calculatetheteststatistic35Example:TwoTailedAsample36Example:TwoTailedStep3:SetRejectionRegionLookingatthepicturebelow,weneedtoputhalfofalphainthelefttail,andtheotherhalfofalphaintherighttail.Thus, R:Z<-2.58orZ>2.58Step4:ConcludeWeseethatZ=-2.722<-2.58,thusourteststatisticisintherejectionregion.Thereforewerejectthenullhypothesisinfavorofthealternative.Wecanconcludethatthemeanissignificantlydifferentfrom$150,thusIhaveproventhatthemeansalesatthegrocerystoreisnot$150.36Example:TwoTailedStep3:SExample:creditmanagerLisa,thecreditmanager,wantstocheckifthemeanmonthlyunpaidbalanceismorethan$400.Thelevelofsignificanceshesetis.05.Arandomcheckof172unpaidbalancesrevealedthesamplemeantobe$407.Thepopulationstandarddeviationisknowntobe$38.ShouldLisaconcludethatthepopulationmeanisgreaterthan$400,orisitreasonabletoassumethatthedifferenceof$7($407-$400)isduetochance?(atconfidencelevel0.05)37Example:creditmanagerLisa,tStep1H0:µ<$400H1:µ>$400Step2Thesignificancelevelis.05.Step3Sinceisknown,wecanfindtheteststatisticz.Step4H0isrejectedifz>1.65(since=0.05)Step5Makeadecisionandinterprettheresults.(Nextpage)Example:Lisa,thecreditmanager38Step1Step2Step3Step4StepThep-valueis.0078foraone-tailedtest.(reftoinformalans.)Computedzof2.42>Criticalz
of1.65,pof.0078<aof.05.
RejectH0.Step5Makeadecisionandinterprettheresults.Wecanconcludethatthemeanunpaidbalanceisgreaterthan$400.39Thep-valueis.0078foraoneLimitationofz-scoresinhypothesistestingThelimitationofz-scoresinhypothesistestingisthatthepopulationstandarddeviation(orvariance)mustbeknown.Whatifyoudon’tknowtheµand
ofthepopulation?Answer:usethesamplevariabilityinstead40Limitationofz-scoresinhypo41Samplevariances2=sumofsquaresofdeviation/(n-1) =sumofsquareofdeviations/df =SS/dfSinceyoumustknowthesamplemeanbeforeyoucancomputesamplevariance,thisplacesarestrictiononsamplevariabilitysuchthatonlyn-1scoresinasamplearefreetovary.Thevaluen-1iscalledthedegreesoffreedom(ordf)forthesamplevariance.41SamplevarianceSinceyoumu42Ifyouselectallthepossiblesamplesofaparticularsize(n),thesetofallpossibletstatisticswillformatdistribution.ZstatistictstatisticUnknown
Goodfor: (i)largesamplen>30,withtheunderlyingdistributionmayormaynotbeNormal (ii)smallsamplen<30withtheunderlyingdistributionisNormal42Ifyouselectallthepossib43Distributionsofthetstatisticfordifferentvaluesofdegreesoffreedomarecomparedtoanormaldistribution.43Distributionsofthetstati44444545464647Thetdistributionwithdf=3.Notethat5%ofthedistributionislocatedinthetailst>2.353andt<2.353.47Thetdistributionwithdf=ThelabelonFries’Catsupindicatesthatthebottlecontains16ouncesofcatsup.Asampleof36bottlesfromlasthour’sproductionrevealedameanweightof16.12ouncesperbottleandasamplestandarddeviationof0.5ounces.Atthe0.05significancelevel,testiftheprocessoutofcontrol?Thatis,canweconcludethatthemeanamountperbottleisdifferentfrom16ounces?48ThelabelonFries’CatsupindStep1Statethenullandthealternativehypotheses
H0:m=16 H1:m=16Step3Sincethesamplesizeislargeenoughandthepopulations.d.isunknown,wecanusetheteststatisticist.Step2Selectthesignificancelevel.Thesignificancelevelis.05.Step4Statethedecisionrule.RejectH0ifz>1.96
orz<-1.96(since=0.05)Step5Makeadecisionandinterprettheresults.(Nextpage)49Step1Step3Step2Step4SteComputedzof1.44<Criticalz
of1.96,pof.1499>aof.05,Donotrejectthenullhypothesis.Thep-valueis.1499foratwo-tailedtest.Step5:
Makeadecisionandinterprettheresults.Wecannotconcludethemeanisdifferentfrom16ounces.50Computedzof1.44Thep-valueTheteststatisticisthetdistribution.TestingforaPopulationMean:Unknown(Population)standarddeviation,Smallsample.ButtheunderlyingdistributionisNormalThecriticalvalueoftisdeterminedbyitsdegreesoffreedomwhichisequalton-1.51TheteststatisticisthetdiThecurrentrateforproducing5ampfusesataElectricCo.is250perhour.Anewmachinehasbeenpurchasedandinstalled.Accordingtothesupplier,theproductionratearenormallydistributed.Asampleof10randomlyselectedhoursfromlastmonthrevealedthatthemeanhourlyproductionwas256units,withasamples.d.of6perhour.
Atthe0.05significancelevel,testifthenewmachineisfasterthantheoldone?52ThecurrentrateforproducingStep1Statethenullandalternatehypotheses.H0:µ<
250H1:µ>250Step2
Selectthelevelofsignificance.Itis.05.Step3Sincetheunderlyingdistributionisnormal,sisunknown,usethetdistribution.Step4Statethedecisionrule.degreesoffreedom=10–1=9.RejectH0ift>1.83353Step1Step2Step3Step4Computedtof3.162>Criticalt
of1.833pof.0058<alphaof.05RejectHoThep-valueis0.0058.(obtainedfromt,needasoftwaretofindit.)Step5Makeadecisionandinterprettheresults.Themeannumberoffusesproducedismorethan250perhour.54Ifthep-valueislessthanalpha,thenrejectthenullhypothesis.Computedtof3.162Thep-valuAmountoftimeUICstudentsspendinlibraryfromsurveyMean41.72minutesStandarddeviation40.179minutesNumberofcases294Nationalsurveyfindsuniversitylibraryusersspendmeanof38minutesIspopulationmeanforUICLibraryusersdifferentfromnationalmean?Example:One-samplehypothesistestformeanAmountoftimeUICstudentsspNullhypothesis
H0:μ=μ0
μ=38
Alternativeorresearchhypothesis
Ha:μ≠μ0
μ≠38Step1.HypothesesNullhypothesis
H0:μ=μ0 Step2.LevelofsignificanceProbabilityoferrorinmakingdecisiontorejectnullhypothesisForthistestchoose
α=0.05Step2.LevelofsignificancePStep3.Teststatisticn=294sousecriticaltvaluesfromtableforinfinity.Step3.Teststatisticn=294CannotrejectthenullhypothesisCannotconcludethatpopulationmeanisdifferentfrom38minutes4.Decision95%confidenceIntervalinthisexample:E=1.96* =4.59[41.72-4.59,41.72+4.59]or[37.13,46.31]CannotrejectthenullhypotheConfidenceintervalfortimespentinlibraryis37.13<μ<46.31Hypothesizedvalueof38minutesfallswithinconfidenceintervalThereforewecannotsaythatpopulationmeanisnotequalto38minutes,cannotrejectthenullhypothesisConfidenceintervalandhypothesistestforlibraryexampleConfidenceintervalfortimesForparametersforasinglesample…One-samplehypothesistestinvolvescomparisonwithpre-specifiedvalue…Whichisoftenartificial…SoconfidenceintervalmostappropriateforreportingresultsForparametersfortwosamples…DifferenceinparametersisofinterestHypothesistestexaminesdirectlyConfidenceintervallessintuitiveUsingconfidenceintervalsorhypothesistestsForparametersforasinglesaConfidenceinterval
orHypothesis
test?Hypothesistestsarebetterwhenthechiefissueistomakeayes/nodecisionaboutwhetherapatternexistsinapopulation.Confidenceintervalsarebetterwhenthechiefissueistomakeabestguessofapopulationparameter.Confidenceinterval
orHypoth63Whenreadingascientificjournal,youtypicallywillnotbetoldexplicitlythattheresearcherevaluatedthedatausingaz-scoreasateststatisticwithanalphalevelof.05.Norwillyoubetoldthat“thenullhypothesisisrejected.”Instead,youwillseeastatementsuchas:Thetreatmentwithmedicationhadasignificanteffectonpeople’sdepressionscores,z=3.85,p<.05.Letusexaminethisstatementpiecebypiece.First,whatismeantbythetermsignificant?Instatisticaltests,thiswordindicatesthattheresultisdifferentfromwhatwouldbeexpectedduetochance.Asignificantresultmeansthatthenullhypothesishasbeenrejected.Thatis,thedataaresignificantbecausethesamplemeanfallsinthecriticalregionandisnotwhatwewouldhaveexpectedtoobtainifH0weretrue.Next,whatisthemeaningofz=3.85?Thezindicatesthataz-scorewasusedastheteststatistictoevaluatethesampledataandthatitsvalueis3.85.63Whenreadingascientificjo64Finally,whatismeantbyp<.05?Thispartofthestatementisaconventionalwayofspecifyingthealphalevelthatwasusedforthehypothesistest.Morespecifically,wearebeingtoldthatanoutcomeasextremeastheresultoftheexperimentwouldoccurbychancewithaprobability(p)thatislessthan.05(alpha)ifH0weretrue.64Finally,whatismeantbyp<65IncircumstanceswherethestatisticaldecisionistofailtorejectH0,thereportmightstatethatTherewasnoevidencethatthemedicationhadaneffectondepressionscores,z=1.30,p>.05.Inthiscase,wearesayingthattheobtainedresult,z=1.30,isnotunusual(notinthecriticalregion)andisrelativelylikelytooccurbychance(theprobabilityisgreaterthan.05).Thus,H0wasnotrejected.65IncircumstanceswherethesUsingthep-ValueinHypothesisTestingIfthep-Valuea,H0cannotberejected.Ifthep-Value<a,H0isrejected.p-valuedoesnotonlytelluswhetherweshouldrejectH0,butalsotellushowconfidentwearetorejectit.66Samplemeansthatfallinthecriticalregion(shadedareas)haveaprobabilitylessthanalpha.H0shouldberejected.Usingthep-ValueinHypothesi67MoreExample:Totesttheeffectivenessofeye-spotpatternsindeterringpredation,asampleofn=16insectivorousbirdsisselected.Theanimalsaretestedinaboxthathastwoseparatechambers(seefigure).Thebirdsarefreetoroamfromonechambertoanotherthroughadoorwayinapartition.Onthewallofonechamber,twolargeeye-spotpatternshavebeenpainted.Theotherchamberhasplainwalls.Thebirdsaretestedoneatatimebyplacingtheminthedoorwayinthecenteroftheapparatus.Eachanimalisleftintheboxfor60minutes,andtheamountoftimespentintheplainchamberisrecorded.Supposethatthesampleofn=16birdsspentanaveragemof39minutesintheplainside,withSS=540.Canweconcludethateye-spotpatternshaveaneffectonbehavior?Notethatwehavenoinformationaboutthepopulationvariance.67MoreExample:Totesttheef68Step1:Statethehypotheses:H0:µplainside=30minutesStep2:Locatethecriticalregion.Theteststatisticisatstatisticbecausethepopulationvarianceisnotknown. df=16-1=15Foratwo-tailedtestatthe.05levelofsignificanceandwith8degreesoffreedom,thecriticalregionconsistsoftvaluesgreaterthan+2.131orlessthan-2.131Step3:Calculatetheteststatistic s2=SS/df=540/15=36 sm=sqrt(s2/16)=1.5
thetstatistict=(39-30)/1.5=6Step4:Makeadecision–rejectH068Step1:Statethehypotheses69Thecriticalregioninthetdistributionforalpha=.05anddf=15.69Thecriticalregioninthet70HYPOTHESISTESTINGfor:populationproportions70HYPOTHESISTESTINGfor:Example:Surveydataonattitudestoward
incomeinequalityImaginethatwewouldliketofindoutifUSadultshadsomenetopiniononthefollowingissue.“Doyouthinkitshouldorshouldnotbethegovernment’sresponsibilitytoreduceincomedifferencesbetweentherichandthepoor?”Score Response Number1 shouldbe 5910 shouldnotbe 636Totaln=1227Example:SurveydataonattituSurveydataonattitudestoward
incomeinequality0:Assumptions:wewillbedoingalarge-sampletestforpopulationproportions.Toperformthistest,wemustassumethat…Samplesizeislargeenoughthatnp(1-p)>10
ThesampleisarandomsampleofsomesortThevariableisadiscreteinterval-scalevariable,whichisautomaticallytrueforpopulationproportions.SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality1:Hypothesis:
letdenotethepopulationproportionwhofavorgovernmentinterventiontoalleviateincomeinequality.Ournullhypothesisisthatthepopulation,onaverage,neithersupportsnoropposesgovernmentintervention.Ho:=0.5ThealternatehypothesisisthenHA:0.5SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality2:TestStatistic:Forannof1227respondents,wecalculatethefollowingstatistics:P =n(yes)/n(total)=591/1227=.4817σ0 =SQRT(o(1-o))=.5SE =σ0/SQRT(n)=.01427z =(P-o
)/s.e.. =(.4817-.500)/.01427. =-1.282Thez-statisticistheteststatisticofinterestinalarge-sampletestofapopulationproportion.SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality3.Pickα=0.05&determinecriticalz-1.282SurveydataonattitudestowarHypothesisTesting统计学假设检验76HypothesisTesting统计学假设检验1HypothesisTesting9.1 NullandAlternativeHypothesesandErrorsinTesting9.2 zTestsaboutaPopulationwithknowns9.3 tTestsaboutaPopulationwithunknowns77HypothesisTesting9.1 NullandHypothesistesting-1Researchersusuallycollectdatafromasampleandthenusethesampledatatohelpanswerquestionsaboutthepopulation.Hypothesistestingisaninferentialstatisticalprocessthatuseslimitedinformationfromthesampledataastoreachageneralconclusionaboutthepopulation.78Hypothesistesting-1ResearcherAhypothesistestisaformalizedprocedurethatfollowsastandardseriesofoperations.Inthisway,researchershaveastandardizedmethodforevaluatingtheresultsoftheirresearchstudies.79Hypothesistesting-2Ahypothesistestisaformali80Thebasicexperimentalsituationforusinghypothesistestingispresentedhere.Itisassumedthattheparameterisknownforthepopulationbeforetreatment.Thepurposeoftheexperimentistodeterminewhetherornotthetreatmenthasaneffect.Isthepopulationmeanaftertreatmentthesameasordifferentfromthemeanbeforetreatment?Asampleisselectedfromthetreatedpopulationtohelpanswerthisquestion.5ThebasicexperimentalsituatProceduresofhypothesis-testing811.
First,westateahypothesisaboutapopulation.Usuallythehypothesisconcernsthevalueofapopulationparameter.Forexample,wemighthypothesizethatthemeanIQforUICstudentsism=110.2.
Next,weobtainarandomsamplefromthepopulation.Forexample,wemightselectarandomsampleofn=100UICstudents.3.
Finally,wecomparethesampledatawiththehypothesis.Ifthedataareconsistentwiththehypothesis,wewillconcludethatthehypothesisisreasonable.Butifthereisabig
discrepancybetweenthedataandthehypothesis,wewilldecidethatthehypothesisiswrong.Proceduresofhypothesis-testiNullandAlternativeHypothesesThenullhypothesis,denotedH0,isastate
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术开发合作合同标的为人工智能应用研发
- 2024年度农产品购销合同及其质量标准
- 空调压缩机市场需求与消费特点分析
- 真空电子管无线电市场发展预测和趋势分析
- 2024年度技术转让合同:新能源专利技术转让协议
- 2024年度保险合同标的保险范围与保险金额确定
- 运载工具用座椅市场发展现状调查及供需格局分析预测报告
- 羽毛球球拍线市场需求与消费特点分析
- 2024年度大蒜进出口贸易合同
- 2024年度技术开发合同研发项目与期限
- 2024水样采集与保存方法
- 2025届高考语文一轮复习:二元思辨类作文思辨关系高阶思维
- 糖尿病患者体重管理专家共识(2024年版)解读
- 《中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)》解读
- HSK标准教程5下-课件-L7
- 设备故障报修维修记录单
- 卫生院基本公共卫生服务项目工作进度表
- 技术咨询方案
- 集会游行示威申请登记表
- 中国矿业大学矿山测量学课程设计
- 2021年学校内部审计工作总结范文
评论
0/150
提交评论