版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
情境引入学习目标1.认识三角形并会用几何语言表示三角形,了解三角形分类.2.掌握三角形的三边关系.(难点)3.运用三角形三边关系解决有关的问题.(重点)三角形的概念一问题1:观察下面三角形的形成过程,说一说什么叫三角形?定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.问题2:三角形中有几条线段?有几个角?A
B
C
边:线段AB,BC,CA是三角形的边.顶点:点A,B,C是三角形的顶点,角:∠A,∠B,∠C叫作三角形的内角,简称三角形的角.有三条线段,三个角记法:三角形ABC用符号表示________.边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示.△ABC边c边b边a顶点C角角角顶点A顶点B①位置关系:不在同一直线上;②联接方式:首尾顺次相接.三角形应满足以下两个条件:要点提醒表示方法:三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,△CAB,△ACB等.三角形的分类二问题1:观察下列三角形,说一说,按照三角形内角的大小,三角形可以分为哪几类?直角三角形、锐角三角形、钝角三角形.腰不等边三角形等腰三角形等边三角形底边顶角底角问题2:你能找出下列三角形各自的特点吗?三边均不相等有两条边相等三条边均相等三角形按边分类不等边三角形等腰三角形把三角形按边分类腰和底不等的等腰三角形等边三角形(三边都相等的三角形)在A点的小狗,为了尽快吃到B点的食物,它为什么选择AB路线,而不选择A
CB路线?CBA三角形的三边关系三AC+CB>AB(两点之间线段最短)归纳总结三角形两边之和大于第三边.三角形两边之差小于第三边.三角形三边关系
例1有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?
判断三条线段是否可以组成三角形,只需满足两边之和大于第三边即可解:∵2+5=7<8,∴不能摆成三角形.
∵5+8=13,
∴不能摆成三角形.归纳典例精析练一练
一个三角形的三边长分别为4,7,x,那么x的取值范围是(
)
A.3<x<11B.4<x<7C.-3<x<11D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.A判断三角形第三边的取值范围要同时验证:两边之和大于第三边,两边之差小于第三边例2
用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm的等腰三角形吗?为什么?解:(1)设底边长为xcm,则腰长为2xcm,x+2x+2x=18.解得x=3.6.∴三边长分别为3.6cm、7.2cm、7.2cm.(2)①当底边长为4cm,设腰长为xcm,则有4+2x=18.解得x=7.②当腰长为4cm,设底边长为xcm,则有2×4+x=18.
解得x=10.∵4+4<10,∴不能围成腰长是4cm的等腰三角形.综上所述:可以围成底边长是4cm的等腰三角形.例3如图,D是△ABC的边AC上一点,AD=BD,试判断AC与BC的大小.解:在△BDC中,∵
BD+DC>BC(三角形的任意两边之和大于第三边).又∵
AD=BD,∴BD+DC=AD+DC=AC,∴
AC>BC.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解:由题意得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.拓展提升课堂小结三角形定义及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省金华市2024年中考数学一模试题含答案
- 开封文化艺术职业学院《创新与创业管理A》2023-2024学年第一学期期末试卷
- 江苏警官学院《现代舞基训》2023-2024学年第一学期期末试卷
- 吉安职业技术学院《机器人技术基础B》2023-2024学年第一学期期末试卷
- 湖南理工学院南湖学院《广播电视新闻播音与主持》2023-2024学年第一学期期末试卷
- 黑龙江建筑职业技术学院《CA课件设计》2023-2024学年第一学期期末试卷
- 高考物理总复习《磁场的性质》专项测试卷带答案
- 重庆对外经贸学院《快速建筑设计》2023-2024学年第一学期期末试卷
- 镇江市高等专科学校《食品加工安全控制》2023-2024学年第一学期期末试卷
- 浙江交通职业技术学院《粉体工程与设备》2023-2024学年第一学期期末试卷
- 《榜样9》观后感心得体会四
- 《住院患者身体约束的护理》团体标准解读课件
- 足球比赛专用表格
- 全面设备管理(TPM)培训资料-课件
- 高中地理《外力作用与地表形态》优质课教案、教学设计
- 车间生产管理流程图模板
- 河北省邢台市各县区乡镇行政村村庄村名居民村民委员会明细
- 市场部绩效考核表
- 10000中国普通人名大全
- 学霸高中数学高中数学笔记全册(最终)
- 热棒的要点及要求
评论
0/150
提交评论