版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中知识数学教案七篇高中学问数学教案七篇
数学是人类严格描述事物抽象结构和模式的通用手段,可以应用于现实世界中的任何问题。下面是我为大家带来的高中学问数学教案七篇,盼望大家能够喜爱!
高中学问数学教案【篇1】
一、教学目标:
1、学问与技能:
(1)结合实例,了解正整数指数函数的概念.
(2)能够求出正整数指数函数的解析式,进一步讨论其性质.
2、过程与方法:
(1)让同学借助实例,了解正整数指数函数,体会从详细到一般,从个别到整体的讨论过程和讨论方法.
(2)从图像上观看体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观:使同学通过学习正整数指数函数体会学习指数函数的重要意义,增加学习讨论函数的乐观性和自信念.
二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.
三、学法指导:同学观看、思索、探究.教学方法:探究沟通,讲练结合。
四、教学过程
(一)新课导入
[互动过程1]:
(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;
(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;
(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.
解:
(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数
分裂次数12345678
细胞个数248163264128256
(2)1个细胞分裂的次数与得到的细胞个数之间的关系可以用图像表示,它的图像是由一些孤立的点组成
(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.
探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数?细胞个数随着分裂次数发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而渐渐增多.
[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满意关系式Q=Q00.9975t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.
(1)计算经过20,40,60,80,100年,臭氧含量Q;
(2)用图像表示每隔20年臭氧含量Q的变化;
(3)试分析随着时间的增加,臭氧含量Q是增加还是削减.
解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512,0.997540=0.9047,0.997560=0.8605,0.997580=0.8185,0.9975100=0.7786;
(2)用图像表示每隔20年臭氧含量Q的变化,它的图像是由一些孤立的点组成.
(3)通过计算和观看图形可以知道,随着时间的增加,臭氧含量Q在渐渐削减.
探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量Q近似满意关系式Q=0.9975t,随着时间的增加,臭氧含量Q在渐渐削减.
[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?
正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.
说明:1.正整数指数函数的图像是一些孤立的点,这是由于函数的定义域是正整数集.2.在讨论增长问题、复利问题、质量浓度问题中常见这类函数.
(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.
分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.
解:依据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).
练习:课本练习1,2
补充例题:高一某同学家长去年年底到银行存入2000元,银行月利率为2.38%,那么假如他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?
解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nN+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.
补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?
(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是由于函数的定义域是正整数集.2.在讨论增长问题、复利问题、质量浓度问题中常见这类函数。
高中学问数学教案【篇2】
【教材分析】
1.学问内容与结构分析
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步学问与其他内容有着亲密的联系,是学习、把握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用.课本从同学熟识的集合(自然数集合、有理数的集合等)动身,结合实例给出了元素、集合的含义,同学通过对详细实例的抽象、概括进展了规律思维力量.
2.学问学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的详细问题,感受集合语言的意义和作用.
3.教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让同学多阅读课本,相互沟通,在此基础上理解概念并熟识新符号的使用.通过问题探究、自主探究、合作沟通、自我总结等形式,调动同学的乐观性.
【学情分析】
在学校,同学学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线).这对同学学习本节课的学问有肯定的关心,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”.集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、精确 地表达数学内容,还可以用来刻画和解决生活中的很多问题.学习集合,可以进展同学们用数学语言进行沟通的力量.
【教学目标】
1.学问与技能
(1)同学通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)把握集合的常用表示法——列举法和描述法.
2.过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的详细问题,提高语言转换和抽象概括力量,树立用集合语言表示数学内容的意识.
3.情态与价值
在把握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高同学分析问题和解决问题的力量,培育同学的应用意识.
【重点难点】
1.教学重点:集合的基本概念与表示方法.
2.教学难点:选择合适的方法正确表示集合.
【教学思路】
通过实例以及同学熟识的数集,引入集合的概念,进而给出集合的表示方法,同学通过自我体会、自主学习、自我总结达到把握本节课内容的目的.教学过程根据“提出问题——同学争论——归纳总结——获得新知——自我检测”环节支配.
【教学过程】
课前预备:
提前留给同学预习方案:a.预习学校数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。
导入新课:同学们,我们今日要学习的是集合的学问,在学校和学校,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-73的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对学校学问的预习和对本节课的预习我信任你们能够很大一部分已经把握了本节学问的主要问题,对不对?(同学们会兴奋地说:对!)
下面我们分三个小组,做个嬉戏,好不好?我们相互竞赛答题,相互评论优点与不足,好不好?(同学们在被调动起心情的时候应当说:好!)
教与学的过程:
预设问题设计意图师生活动老师活动
一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组同学更宽的思索空间。启发思索,激发爱好。老师点拨,准时订正偏差的回答方向。(抱负答案:我们学过许多集合的学问了。我们会举出一些集合的例子。)
同学三个组分组轮番回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培育同学的总结概括力量。引导同学共同得出正确的结论。最终给出精确 的定义:我们把讨论的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集).同学争论,分组轮番回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过同学自己总结,对元素与集合的关系记忆更深刻。老师指导同学得出精确 答案。(抱负答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.假如a是集合A的元素,就说a属于A集合A,记做a∈A,假如a不是集合A中的元素,就说a不属于集合A,记做A)同学争论,分组轮番回答。
可以相互挑出对方回答问题的错误来竞赛。我们描述集合常用哪些方法呢?怎么表示?引导同学熟悉集合的两种常见表示方法。老师引导指正。(抱负答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。详细方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展学问,让同学对元素的特征有极爱哦理性的熟悉,并开发其探究思维。老师点拨。(抱负答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有挨次的,无序性。
即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。
(2)互异性:同一个集合中的元素是互不相同的。
(3)无序性:任意转变集合中元素的排列次序,它们仍旧表示同一个集合。)同学探究争论,回答。什么叫两个集合相等呢?深刻理解集合。老师给出答案。(假如构成两个集合的元素是一样的,我们称这两个集合是相等的。)同学探讨回答。
高中学问数学教案【篇3】
一、教学目标
1.学问与技能
(1)把握画三视图的基本技能
(2)丰富同学的空间想象力
2.过程与方法
主要通过同学自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高同学空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简洁组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观看、动手实践、争论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在学校,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求同学画出它们的三视图,老师巡察,同学画完后可沟通结果并争论;
2.老师引导同学用类比方法画出简洁组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
同学画完后,可把自己的作品展现并与同学沟通,总结自己的作图心得。
作三视图之前应当细心观看,熟悉了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思索图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于熟悉空间几何体有何作用?你有何体会?
老师巡察指导,解答同学在学习中遇到的困难,然后让同学发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学沟通。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请同学回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相像的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
高中学问数学教案【篇4】
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步把握求曲线方程的方法.
(4)通过本节内容的教学,培育同学分析问题和转化的力量.
教学重点、难点:求曲线的方程.
教学用具:
计算机.
教学方法:
启发引导法,争论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
同学思索并回答.老师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过讨论方程的性质间接地来讨论曲线的性质,这一讨论几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)依据已知条件,求出表示平面曲线的方程.
(2)通过方程,讨论平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先讨论如何求出曲线方程,再讨论如何用方程讨论曲线.本节课就初步讨论曲线方程的求法.
【问题】
如何依据已知条件,求出曲线的方程.
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.
首先由同学分析:依据直线方程的学问,运用点斜式即可解决.
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?依据是什么,有证明吗?
(通过老师引导,是同学意识到这是以前没有解决的问题,应当证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上.
综合(1)、(2),①是所求直线的方程.
至此,证明完毕.回顾上述内容我们会发觉一个好玩的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最终得到式子,假如去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果真胜利,当然也不要忘了证明,即验证两条是否都满意.明显,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于其次条上边已证.
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又特别自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.
让我们用这个方法试解如下问题:
例2:点与两条相互垂直的直线的距离的积是常数求点的轨迹方程.
分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,明显用已知中两条相互垂直的直线作坐标轴,建立直角坐标系.然后仿按例1中的解法进行求解.
求解过程略.
【概括总结】通过同学争论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最终整理出方程,并证明或修正.说得更精确 一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
一般状况下,求解过程已表明曲线上的点的坐标都是方程的解;假如求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常状况下证明可省略,不过特别状况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.
【动画演示】用几何画板演示曲线生成的过程和外形,在运动变化的过程中查找关系.
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简洁,如图3所示.设、的坐标为、,则的坐标为,的坐标为.
依据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最终曲线方程可表示为
【小结】师生共同总结:
(1)解析几何讨论讨论问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应留意什么?
【作业】课本第72页练习1,2,3;
高中学问数学教案【篇5】
[学习目标]
(1)会用坐标法及距离公式证明Cα+β;
(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;
(3)把握公式Cα±β、Sα±β、Tα±β,并利用简洁的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
[学习重点]
两角和与差的正弦、余弦、正切公式
[学习难点]
余弦和角公式的推导
[学问结构]
1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)
2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应当得出如下结论:一般状况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排解一些特例,如sin(0+α)=sin0+sinα=sinα。
3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。留意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。
4、关于公式的正用、逆用及变用
高中学问数学教案【篇6】
一、教学目标
【学问与技能】
把握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经受三角函数的单调性的探究过程,提升规律推理力量。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的爱好。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何讨论三角函数的单调性
(二)小结作业
提问:今日学习了什么?
引导同学回顾:基本不等式以及推导证明过程。
课后作业:
思索如何用三角函数单调性比较三角函数值的大小。
高中学问数学教案【篇7】
一、教学目标
(一)学问与力量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024预制板购销合同
- 2025年度瓷砖研发中心实验室建设与运营合同3篇
- 2025年度危险化学品储存安全管理承包合同4篇
- 2025年度智能物流中心建设与运营管理合同4篇
- 2025年度商业地产租赁代理服务合同模板4篇
- 2024物业项目策划2024委托代理合同
- 2025年度医疗器械代生产加工合同范本4篇
- 2025年度特殊用途车牌租赁与押金管理协议4篇
- 2025年度展会现场安保及应急预案服务合同3篇
- 2024铁路钢轨铺设及维护工程协议细则
- 劳动合同续签意见单
- 大学生国家安全教育意义
- 2024年保育员(初级)培训计划和教学大纲-(目录版)
- 河北省石家庄市2023-2024学年高二上学期期末考试 语文 Word版含答案
- 企业正确认识和运用矩阵式管理
- 分布式光伏高处作业专项施工方案
- 陈阅增普通生物学全部课件
- 检验科主任就职演讲稿范文
- 人防工程主体监理质量评估报告
- 20225GRedCap通信技术白皮书
- 燃气有限公司客户服务规范制度
评论
0/150
提交评论