




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆过定点问题(非常好)圆过定点问题(非常好)圆过定点问题(非常好)圆过定点问题(非常好)编制仅供参考审核批准生效日期地址:电话:传真:邮编:圆过定点问题班级_________________姓名_______________1.已知定点G(﹣3,0),S是圆C:(X﹣3)2+y2=72(C为圆心)上的动点,SG的垂直平分线与SC交于点E.设点E的轨迹为M.(1)求M的方程;(2)是否存在斜率为1的直线,使得直线与曲线M相交于A,B两点,且以AB为直径的圆恰好经过原点若存在,求出直线的方程;若不存在,请说明理由.2.在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x﹣3)2+(y﹣4)2=1.(Ⅰ)判断圆C1与圆C2的位置关系;(Ⅱ)若动圆C同时平分圆C1的周长、圆C2的周长,则动圆C是否经过定点若经过,求出定点的坐标;若不经过,请说明理由.3.已知定点A(﹣2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的倍,设点M的轨迹为E,点C是轨迹E上的任一点,直线AC与BC分别交直线l与点P,Q.(1)求点M的轨迹E的方程;(2)试判断以线段PQ为直径的圆是否经过定点F,并说明理由.4.如图,已知椭圆C:+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=﹣2分别交于点M、N,(ⅰ)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;(ⅱ)当点P运动时,以MN为直径的圆是否经过定点请证明你的结论.5.如图所示,已知圆C:x2+y2=r2(r>0)上点处切线的斜率为,圆C与y轴的交点分别为A,B,与x轴正半轴的交点为D,P为圆C在第一象限内的任意一点,直线BD与AP相交于点M,直线DP与y轴相交于点N.(1)求圆C的方程;(2)试问:直线MN是否经过定点若经过定点,求出此定点坐标;若不经过,请说明理由.6.二次函数f(x)=3x2﹣4x+c(x∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为⊙C.(1)求实数c的取值范围;(2)求⊙C的方程;(3)问⊙C是否经过某定点(其坐标与c的取值无关)请证明你的结论.7.如图,抛物线M:y=x2+bx(b≠0)与x轴交于O,A两点,交直线l:y=x于O,B两点,经过三点O,A,B作圆C.(I)求证:当b变化时,圆C的圆心在一条定直线上;(II)求证:圆C经过除原点外的一个定点;(III)是否存在这样的抛物线M,使它的顶点与C的距离不大于圆C的半径8.在平面直角坐标系xoy中,点M到两定点F1(﹣1,0)和F2(1,0)的距离之和为4,设点M的轨迹是曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与曲线C相交于不同两点A、B(A、B不是曲线C和坐标轴的交点),以AB为直径的圆过点D(2,0),试判断直线l是否经过一定点,若是,求出定点坐标;若不是,说明理由.9.如图.直线l:y=kx+1与椭圆C1:交于A,C两点,A.C在x轴两侧,B,D是圆C2:x2+y2=16上的两点.且A与B.C与D的横坐标相同,纵坐标同号.(I)求证:点B纵坐标是点A纵坐标的2倍,并计算||AB|﹣|CD||的取值范围;(II)试问直线BD是否经过一个定点若是,求出定点的坐标:若不是,说明理由.10.已知A(﹣1,0),B(2,0),动点M(x,y)满足=,设动点M的轨迹为C.(1)求动点M的轨迹方程,并说明轨迹C是什么图形;(2)求动点M与定点B连线的斜率的最小值;(3)设直线l:y=x+m交轨迹C于P,Q两点,是否存在以线段PQ为直径的圆经过A若存在,求出实数m的值;若不存在,说明理由.11.已知定直线l:x=﹣1,定点F(1,0),⊙P经过F且与l相切.(1)求P点的轨迹C的方程.(2)是否存在定点M,使经过该点的直线与曲线C交于A、B两点,并且以AB为直径的圆都经过原点;若有,请求出M点的坐标;若没有,请说明理由.12.已知动圆P与圆M:(x+1)2+y2=16相切,且经过M内的定点N(1,0).(1)试求动圆的圆心P的轨迹C的方程;(2)设O是轨迹C上的任意一点(轨迹C与x轴的交点除外),试问在x轴上是否存在两定点A,B,使得直线OA与OB的斜率之积为定值(常数)若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.13.已知在△ABC中,点A、B的坐标分别为(﹣2,0)和(2,0),点C在x轴上方.(Ⅰ)若点C的坐标为(2,3),求以A、B为焦点且经过点C的椭圆的方程;(Ⅱ)若∠ACB=45°,求△ABC的外接圆的方程;(Ⅲ)若在给定直线y=x+t上任取一点P,从点P向(Ⅱ)中圆引一条切线,切点为Q.问是否存在一个定点M,恒有PM=PQ请说明理由.
2015年03月12日yinyongxia100的高中数学组卷参考答案与试题解析一.填空题(共1小题)1.已知定点G(﹣3,0),S是圆C:(X﹣3)2+y2=72(C为圆心)上的动点,SG的垂直平分线与SC交于点E.设点E的轨迹为M.(1)求M的方程;(2)是否存在斜率为1的直线,使得直线与曲线M相交于A,B两点,且以AB为直径的圆恰好经过原点若存在,求出直线的方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知条件推导出点E的轨迹是以G,C为焦点,长轴长为6的椭圆,由此能求出动点E的轨迹方程.(2)假设存在符合题意的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两点,其方程为y=x+m,由,得3x2+4mx+2m2﹣18=0.由此能求出符合题意的直线l存在,所求的直线l的方程为y=x或y=x﹣2.解答:解:(1)由题知|EG|=|ES|,∴|EG|+|EC|=|ES|+|EC|=6.又∵|GC|=6,∴点E的轨迹是以G,C为焦点,长轴长为6的椭圆,∴动点E的轨迹方程为=1.…(4分)(2)假设存在符合题意的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两点,其方程为y=x+m,由消去y,化简得3x2+4mx+2m2﹣18=0.∵直线l与椭圆C相交于A,B两点,∴△=16m2﹣12(2m2﹣18)>0,化简得m2<27,解得﹣3.…(6分)∴x1+x2=﹣,x1•x2=.∵以线段AB为直径的圆恰好经过原点,∴=0,所以x1x2+y1y2=0.…(8分)又y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,x1x2+y1y2=2x1x2+m(x1+x2)+m2=﹣+m2=0,解得m=.…(11分)由于(﹣3,3),∴符合题意的直线l存在,所求的直线l的方程为y=x或y=x﹣2.…(13分)点评:本题考查点的方程的求法,考查满足条件的直线是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.二.解答题(共12小题)2.在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x﹣3)2+(y﹣4)2=1.(Ⅰ)判断圆C1与圆C2的位置关系;(Ⅱ)若动圆C同时平分圆C1的周长、圆C2的周长,则动圆C是否经过定点若经过,求出定点的坐标;若不经过,请说明理由.考点:直线和圆的方程的应用.专题:直线与圆.分析:(Ⅰ)求出两圆的圆心距离,即可判断圆C1与圆C2的位置关系;(Ⅱ)根据圆C同时平方圆周,建立条件方程即可得到结论.解答:解:(Ⅰ)C1:(x+1)2+y2=1的圆心为(﹣1,0),半径r=1,圆C2:(x﹣3)2+(y﹣4)2=1的圆心为(3,4),半径R=1,则|C1C2|=,∴圆C1与圆C2的位置关系是相离.(Ⅱ)设圆心C(x,y),由题意得CC1=CC2,即,整理得x+y﹣3=0,即圆心C在定直线x+y﹣3=0上运动.设C(m,3﹣m),则动圆的半径,于是动圆C的方程为(x﹣m)2+(y﹣3+m)2=1+(m+1)2+(3﹣m)2,整理得:x2+y2﹣6y﹣2﹣2m(x﹣y+1)=0.由,解得或,即所求的定点坐标为(1﹣,2﹣),(1+,2+).点评:本题主要考查圆与圆的位置关系的判断,以及与圆有关的综合应用,考查学生的计算能力.3.已知定点A(﹣2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的倍,设点M的轨迹为E,点C是轨迹E上的任一点,直线AC与BC分别交直线l与点P,Q.(1)求点M的轨迹E的方程;(2)试判断以线段PQ为直径的圆是否经过定点F,并说明理由.考点:轨迹方程;圆的标准方程.专题:直线与圆.分析:(1)由椭圆的第二定义即可知道点M的轨迹E为椭圆;(2)设出椭圆上的点C的坐标,进而写出直线AC、BC的方程,分别求出点P、Q的坐标,只要判断kPF•kQF=﹣1是否成立即可.解答:解:(1)由椭圆的第二定义可知:点M的轨迹E是以定点F(1,0)为焦点,离心率e=,直线l:x=4为准线的椭圆(除去与x轴相交的两点).∴c=1,,∴a=2,b2=22﹣12=3,∴点M的轨迹为椭圆E,其方程为(除去(±2,0)).(2)以线段PQ为直径的圆经过定点F.下面给出证明:如图所示:设C(x0,y0),(x0≠±2),则直线AC的方程为:,令x=4,则yP=,∴,∴=;直线BC的方程为:,令x=4,则yQ=,∴,∴kQF==.∴kPF•kQF==,∵点C(x0,y0)在椭圆上,∴,∴=﹣1,∴kPF•kQF=﹣1.因此以线段PQ为直径的圆经过定点F.点评:熟练掌握椭圆的定义、直线垂直与斜率的关系是解题的关键.4.如图,已知椭圆C:+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=﹣2分别交于点M、N,(ⅰ)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;(ⅱ)当点P运动时,以MN为直径的圆是否经过定点请证明你的结论.考点:椭圆的应用.专题:综合题;圆锥曲线的定义、性质与方程.分析:(ⅰ)由椭圆方程求出两个顶点A,B的坐标,设出P点坐标,写出直线AP、BP的斜率k1,k2,结合P的坐标适合椭圆方程可证结论;(ⅱ)设出以MN为直径的圆上的动点Q的坐标,由=0列式得到圆的方程,化为圆系方程后联立方程组可求解圆所过定点的坐标.解答:(ⅰ)证明:由题设椭圆C::+y2=1可知,点A(0,1),B(0,﹣1).令P(x0,y0),则由题设可知x0≠0.∴直线AP的斜率k1=,PB的斜率为k2=.又点P在椭圆上,∴+y02=1(x0≠1)从而有k1•k2=•=﹣;(ⅱ)解:以MN为直径的圆恒过定点(0,﹣2+2)或(0,﹣2﹣2).事实上,设点Q(x,y)是以MN为直径圆上的任意一点,则=0,故有+(y+2)(y+2)=0.又k1•k2=﹣∴以MN为直径圆的方程为x2+(y+2)2﹣12+=0.令x=0,则(y+2)2=12,解得y=﹣2±2.∴以MN为直径的圆恒过定点(0,﹣2+2)或(0,﹣2﹣2).点评:本题考查了直线的斜率,考查了直线与圆锥曲线的关系,考查了圆系方程,考查了学生的计算能力,是有一定难度题目.5.如图所示,已知圆C:x2+y2=r2(r>0)上点处切线的斜率为,圆C与y轴的交点分别为A,B,与x轴正半轴的交点为D,P为圆C在第一象限内的任意一点,直线BD与AP相交于点M,直线DP与y轴相交于点N.(1)求圆C的方程;(2)试问:直线MN是否经过定点若经过定点,求出此定点坐标;若不经过,请说明理由.考点:直线与圆的位置关系.专题:直线与圆.分析:(1)根据条件结合点在圆上,求出圆的半径即可求圆C的方程;(2)根据条件求出直线MN的斜率,即可得到结论.解答:解:(1)∵,∴.∵点在圆C:x2+y2=r2上,∴.故圆C的方程为x2+y2=4.(2)设P(x0,y0),则x02+y02=4,直线BD的方程为x﹣y﹣2=0,直线AP的方程为y=+2联立方程组,得M(,),易得N(0,),∴kMN=2X===,∴直线MN的方程为y=x+,化简得(y﹣x)x0+(2﹣x)y0=2y﹣2x…(*)令,得,且(*)式恒成立,故直线MN经过定点(2,2).点评:本题主要考查圆的方程的求解,以及直线和圆的位置关系的应用,考查学生的计算能力.6.二次函数f(x)=3x2﹣4x+c(x∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为⊙C.(1)求实数c的取值范围;(2)求⊙C的方程;(3)问⊙C是否经过某定点(其坐标与c的取值无关)请证明你的结论.考点:圆的标准方程;二次函数的性质;圆系方程.专题:直线与圆.分析:(1)令x=0求出y的值,确定出抛物线与y轴的交点坐标,令f(x)=0,根据与x轴交点有两个得到c不为0且根的判别式的值大于0,即可求出c的范围;(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0得,x2+Dx+F=0,这与x2﹣x+=0是同一个方程,求出D,F.令x=0得,y2+Ey+F=0,此方程有一个根为c,代入得出E,由此求得圆C的一般方程;(3)圆C过定点(0,)和(,),证明:直接将点的坐标代入验证.解答:解:(1)令x=0,得抛物线与y轴的交点(0,c),令f(x)=3x2﹣4x+c=0,由题意知:c≠0且△>0,解得:c<且c≠0;(2)设圆C:x2+y2+Dx+Ey+F=0,令y=0,得到x2+Dx+F=0,这与x2﹣x+=0是一个方程,故D=﹣,F=;令x=0,得到y2+Ey+F=0,有一个根为c,代入得:c2+cE+=0,解得:E=﹣c﹣,则圆C方程为:x2+y2﹣x﹣(c+)y+=0;(3)圆C必过定点(0,)和(,),理由为:由x2+y2﹣x﹣(c+)y+=0,令y=,解得:x=0或,∴圆C必过定点(0,)和(,).点评:本题主要考查圆的标准方程,一元二次方程根的分布与系数的关系,体现了转化的数学思想,属于中档题.7.如图,抛物线M:y=x2+bx(b≠0)与x轴交于O,A两点,交直线l:y=x于O,B两点,经过三点O,A,B作圆C.(I)求证:当b变化时,圆C的圆心在一条定直线上;(II)求证:圆C经过除原点外的一个定点;(III)是否存在这样的抛物线M,使它的顶点与C的距离不大于圆C的半径考点:圆与圆锥曲线的综合;圆的一般方程;抛物线的简单性质.专题:计算题.分析:(I)在方程y=x2+bx中.令y=0,y=x,易得A,B的坐标表示,设圆C的方程为x2+y2+Dx+Ey=0,利用条件得出,写出圆C的圆心坐标的关系式,从而说明当b变化时,圆C的圆心在定直线y=x+1上.(II)设圆C过定点(m,n),则m2+n2+bm+(b﹣2)n=0,它对任意b≠0恒成立,从而求出m,n的值,从而得出当b变化时,(I)中的圆C经过除原点外的一个定点坐标;(III)对于存在性问题,可先假设存在,即假设存在这样的抛物线M,使它的顶点与它对应的圆C的圆心之间的距离不大于圆C的半径,再利用不等关系,求出b,若出现矛盾,则说明假设不成立,即不存在;否则存在.解答:解:(I)在方程y=x2+bx中.令y=0,y=x,易得A(﹣b,0),B(1﹣b,1﹣b)设圆C的方程为x2+y2+Dx+Ey=0,则⇒,故经过三点O,A,B的圆C的方程为x2+y2+bx+(b﹣2)y=0,设圆C的圆心坐标为(x0,y0),则x0=﹣,y0=﹣,∴y0=x0+1,这说明当b变化时,(I)中的圆C的圆心在定直线y=x+1上.(II)设圆C过定点(m,n),则m2+n2+bm+(b﹣2)n=0,整理得(m+n)b+m2+n2﹣2n=0,它对任意b≠0恒成立,∴⇒或故当b变化时,(I)中的圆C经过除原点外的一个定点坐标为(﹣1,1).(III)抛物线M的顶点坐标为(﹣,﹣),若存在这样的抛物线M,使它的顶点与它对应的圆C的圆心之间的距离不大于圆C的半径,则|﹣|≤,整理得(b2﹣2b)2≤0,因b≠0,∴b=2,以上过程均可逆,故存在抛物线M:y=x2+2x,使它的顶点与C的距离不大于圆C的半径.点评:本题考查了二次函数解析式的确定,圆的一般方程,抛物线的简单性质等知识点.综合性较强,考查学生数形结合的数学思想方法.8.在平面直角坐标系xoy中,点M到两定点F1(﹣1,0)和F2(1,0)的距离之和为4,设点M的轨迹是曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与曲线C相交于不同两点A、B(A、B不是曲线C和坐标轴的交点),以AB为直径的圆过点D(2,0),试判断直线l是否经过一定点,若是,求出定点坐标;若不是,说明理由.考点:轨迹方程;直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的定义可知,点M的轨迹C是以两定点F1(﹣1,0)和F2(1,0)为焦点,长半轴长为2的椭圆,由此可得曲线C的方程;(2)直线y=kx+m代入椭圆方程,利用韦达定理,结合以AB为直径的圆过点D(2,0),即可求得结论.解答:解:(1)设M(x,y),由椭圆的定义可知,点M的轨迹C是以两定点F1(﹣1,0)和F2(1,0)为焦点,长半轴长为2的椭圆∴短半轴长为=∴曲线C的方程为;(2)设A(x1,y1),B(x2,y2),则直线y=kx+m代入椭圆方程,消去y可得(3+4k2)x2+8mkx+4(m2﹣3)=0∴x1+x2=﹣,x1x2=∴y1y2=(kx1+m)(kx2+m)=∵以AB为直径的圆过点D(2,0),∴kADkBD=﹣1∴y1y2+x1x2﹣2(x1+x2)+4=0∴∴7m2+16mk+4k2=0∴m=﹣2k或m=﹣,均满足△=3+4k2﹣m2>0当m=﹣2k时,l的方程为y=k(x﹣2),直线过点(2,0),与已知矛盾;当m=﹣时,l的方程为y=k(x﹣),直线过点(,0),∴直线l过定点,定点坐标为(,0).点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.9.(2013•温州二模)如图.直线l:y=kx+1与椭圆C1:交于A,C两点,A.C在x轴两侧,B,D是圆C2:x2+y2=16上的两点.且A与B.C与D的横坐标相同.纵坐标同号.(I)求证:点B纵坐标是点A纵坐标的2倍,并计算||AB|﹣|CD||的取值范围;(II)试问直线BD是否经过一个定点若是,求出定点的坐标:若不是,说明理由.考点:直线与圆锥曲线的关系;两点间的距离公式.专题:综合题;圆锥曲线的定义、性质与方程.分析:(I)设A(x1,y1),B(x1,y2),分别代入椭圆、圆的方程可得,消掉x1得,由y1,y2同号得y2=2y1,设C(x3,y3),D(x3,y4),同理可得y4=2y3,联立直线与椭圆方程消掉y得x的二次方程,由A、C在x轴的两侧,得y1y3<0,代入韦达定理可求得k2范围,而||AB|﹣|CD||=||y1|﹣|y3||=|y1+y3|=|k(x1+x3)+2|,再由韦达定理及k2范围即可求得答案;(II)由斜率公式求出直线BD的斜率,由点斜式写出直线BD方程,再由点A在直线l上可得直线BD方程,从而求得其所过定点.解答:(I)证明:设A(x1,y1),B(x1,y2),根据题意得:⇒,∵y1,y2同号,∴y2=2y1,设C(x3,y3),D(x3,y4),同理可得y4=2y3,∴|AB|=|y1|,|CD|=|y3|,由⇒(4k2+1)x2+8kx﹣12=0,△>0恒成立,则,,∵A、C在x轴的两侧,∴y1y3<0,∴(kx1+1)(kx3+1)=k2x1x3+k(x1+x3)+1=<0,∴,∴||AB|﹣|CD||=||y1|﹣|y3||=|y1+y3|=|k(x1+x3)+2|=∈(0,);(II)解:∵直线BD的斜率=2k,∴直线BD的方程为y=2k(x﹣x1)+2y1=2kx﹣2(kx1﹣y1),∵y1=kx1+1,∴直线BD的方程为y=2kx+2,∴直线BD过定点(0,2).点评:本题考查直线与圆锥曲线的位置关系、两点间的距离公式,考查学生分析解决问题的能力,本题中多次用到韦达定理,应熟练掌握.10.已知A(﹣1,0),B(2,0),动点M(x,y)满足=,设动点M的轨迹为C.(1)求动点M的轨迹方程,并说明轨迹C是什么图形;(2)求动点M与定点B连线的斜率的最小值;(3)设直线l:y=x+m交轨迹C于P,Q两点,是否存在以线段PQ为直径的圆经过A若存在,求出实数m的值;若不存在,说明理由.考点:轨迹方程;圆方程的综合应用.专题:综合题;探究型.分析:解:(1)先将条件化简即得动点M的轨迹方程,并说明轨迹C是图形:轨迹C是以(﹣2,0)为圆心,2为半径的圆.(2)先设过点B的直线为y=k(x﹣2).利用圆心到直线的距离不大于半径即可解得k的取值范围,从而得出动点M与定点B连线的斜率的最小值即可;(3)对于存在性问题,可先假设存在,即存在以线段PQ为直径的圆经过A,再利用PA⊥QA,求出m的长,若出现矛盾,则说明假设不成立,即不存在;否则存在.解答:解:(1)化简可得(x+2)2+y2=4.轨迹C是以(﹣2,0)为圆心,2为半径的圆(3分)(2)设过点B的直线为y=k(x﹣2).圆心到直线的距离≤2∴,kmin=(7分)(3)假设存在,联立方程得2x2+2(m+2)x+m2=0设P(x1,y1),Q(x2,y2)则x1+x2=﹣m﹣2,x1x2=PA⊥QA,∴(x1+1)(x2+1)+y1y2=(x1+1)(x2+1)+(x1+m)(x2+m)=0,2x1x2+(m+1)(x1+x2)+m2+1=0得m2﹣3m﹣1=0,且满足△>0.∴(12分)点评:求曲线的轨迹方程是解析几何的两个基本问题之一求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系,求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.本题是利用的直接法.直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.11.已知定直线l:x=﹣1,定点F(1,0),⊙P经过F且与l相切.(1)求P点的轨迹C的方程.(2)是否存在定点M,使经过该点的直线与曲线C交于A、B两点,并且以AB为直径的圆都经过原点;若有,请求出M点的坐标;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:直线与圆.分析:(1)由已知得点P的轨迹C是以F为焦点,l为准线的抛物线,由此能求出点P的轨迹C的方程.(2)设AB的方程为x=my+n,代入抛物线方程整理,得:y2﹣4my﹣4n=0,由此利用韦达定理、直径性质能求出直线AB:x=my+4恒过M(4,0)点.解答:解:(1)由题设知点P到点F的距离与点P到直线l的距离相等,∴点P的轨迹C是以F为焦点,l为准线的抛物线,∴点P的轨迹C的方程为y2=4x.(2)设AB的方程为x=my+n,代入抛物线方程整理,得:y2﹣4my﹣4n=0,设A(x1,y1),B(x2,y2),则,∵以AB为直径的圆过原点,∴OA⊥OB,∴y1y2+x1x2=0,∴,∴y1y2=﹣16,∴﹣4n=﹣16,解得n=4,∴直线AB:x=my+4恒过M(4,0)点.点评:本题考查点的轨迹方程的求法,考查满足条件的点的坐标是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.12.已知动圆P与圆M:(x+1)2+y2=16相切,且经过M内的定点N(1,0).(1)试求动圆的圆心P的轨迹C的方程;(2)设O是轨迹C上的任意一点(轨迹C与x轴的交点除外),试问在x轴上是否存在两定点A,B,使得直线OA与OB的斜率之积为定值(常数)若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.考点:圆方程的综合应用;圆与圆的位置关系及其判定.分析:(1)利用动圆P与定圆(x﹣1)2+y2=16相内切,以及椭圆的定义,可得动圆圆心P的轨迹M的方程;(2)先设任意一点以及A、B的坐标,kQA•kQB=k(常数),根据轨迹方程列出关于k、s、t的方程,并求出k、s、t的值,即可求出结果.解答:解:(1)由题意,两圆相内切,故,|PM|=4﹣|PN|,即|PM|+|PN|=4.又∵MN=2<4∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙大宁波理工学院《创业创新实训》2023-2024学年第二学期期末试卷
- 唐山师范学院《国际营销英语》2023-2024学年第一学期期末试卷
- 重庆水利电力职业技术学院《文化创意与传播》2023-2024学年第二学期期末试卷
- 浙江药科职业大学《多媒体影像创作》2023-2024学年第二学期期末试卷
- 浙江金华科贸职业技术学院《桃李物流管理实训》2023-2024学年第二学期期末试卷
- 石家庄铁路职业技术学院《非线性系统理论与设计》2023-2024学年第二学期期末试卷
- 承包师生食堂小卖部合同
- 房地产财务顾问服务合同
- 建筑安装工程施工劳务分包合同
- 手房房屋买卖转让合同
- 清罐合同范本
- 临床医生个人职业规划
- 肠穿孔护理疑难病例讨论
- 【字节跳动盈利模式和核心竞争力探析(论文)12000字】
- 区域地理课件教学课件
- 机器的征途:空天科技学习通超星期末考试答案章节答案2024年
- 北师大版(2024新版)七年级上册数学第四章《基本平面图形》测试卷(含答案解析)
- 教学设计初中英语课的口语情景演练与表达训练
- 宠物医院保洁合同
- 新解读《JTG 2112-2021城镇化地区公路工程技术标准》
- 2024年国家义务教育质量监测四年级英语模拟练习练习卷含答案
评论
0/150
提交评论