版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知直线,,若,则实数的值为A.8 B.2C. D.-22.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.3.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.4.若在上单调递减,则的取值范围是().A. B.C. D.5.下列四个选项中正确的是()A B.C. D.6.为了得到函数的图象,可以将函数的图象()A.沿轴向左平移个单位 B.沿轴向右平移个单位C.沿轴向左平移个单位 D.沿轴向右平移个单位7.已知函数,则的零点所在区间为A. B.C. D.8.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.9.曲线在区间上截直线及所得的弦长相等且不为,则下列对,的描述正确的是A., B.,C., D.,10.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则11.已知正实数满足,则的最小值是()A B.C. D.12.已知角α的终边过点,则的值是()A. B.C.0 D.或二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若角的终边经过点,则___________.14.函数的最大值是__________15.函数的最小正周期是__________16.已知函数的图像恒过定点,则的坐标为_____________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.18.证明:函数是奇函数.19.已知函数f(x)=2cos.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及取得最大值时自变量x的取值集合;(3)求函数f(x)的单调增区间20.已知二次函数图象经过原点,函数是偶函数,方程有两相等实根.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围;(3)若函数与的图像有且只有一个公共点,求实数的取值范围.21.已知函数为偶函数.(1)求的值;(2)若恒成立,求实数的取值范围.22.已知函数(1)求函数的单调递减区间;(2)若关于的方程有解,求的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】利用两条直线平行的充要条件求解【详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【点睛】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用2、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D3、C【解析】利用扇形的面积公式即可求解.【详解】设扇形的半径为,则扇形的面积,解得:,故选:C4、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.5、D【解析】根据集合与集合关系及元素与集合的关系判断即可;【详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D6、C【解析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】,将函数的图象沿轴向左平移个单位,即可得到函数的图象,故选:C【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题7、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题8、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.9、A【解析】分析:,关于对称,可得,由直线及的距离小于可得.详解:因为曲线在区间上截直线及所得的弦长相等且不为,可知,关于对称,所以,又弦长不为,直线及的距离小于,∴.故选A.点睛:本题主要考查三角函数的图象与性质,意在考查综合运用所学知识解决问题的能力,以及数形结合思想的应用,属于简单题.10、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.11、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.12、B【解析】根据三角函数的定义进行求解即可.【详解】因为角α的终边过点,所以,,,故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据三角函数的定义求出和的值,再由正弦的二倍角公式即可求解.【详解】因为角的终边经过点,所以,,则,所以,,所以,故答案为:.14、【解析】由题意得,令,则,且故,,所以当时,函数取得最大值,且,即函数的最大值为答案:点睛:(1)对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,当其中一个式子的值知道时,其余二式的值可求,转化的公式为(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函数的最值(或值域)时,可先设t=sinx±cosx,转化为关于t的二次函数求最值(或值域)15、【解析】根据正弦函数的最小正周期公式即可求解【详解】因为由正弦函数的最小正周期公式可得故答案为:16、【解析】由过定点(0,1),借助于图像平移即可.【详解】过定点(0,1),而可以看成的图像右移3个单位,再下移2个点位得到的,所以函数的图像恒过定点即A故答案为:【点睛】指数函数图像恒过(0,1),对数函数图像恒过(1,0).三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)求得集合,根据集合的交集、并集和补集的运算,即可求解;(2)由,所以,结合集合的包含关系,即可求解.【详解】(1)由题意,集合,因为集合,则,所以,.(2)由题意,因为,所以,又因为,,所以,即实数的取值范围为.【点睛】本题主要考查了集合的交集、并集和补集的运算,以及利用集合的包含关系求解参数问题,其中解答中熟记集合的基本运算,以及合理利用集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.18、证明见解析【解析】由奇偶性的定义证明即可得出结果.【详解】中,,即,的定义域为,关于原点对称,,,函数是奇函数.19、(1)(2)当时,取得最大值为.(3)【解析】(1)根据三角函数最小正周期公式求得正确答案.(2)根据三角函数最大值的求法求得正确答案.(3)利用整体代入法求得的单调递增区间.【小问1详解】的最小正周期为.【小问2详解】当时,取得最大值为.【小问3详解】由,解得,所以的单调递增区间为.20、(1);(2);(3).【解析】(1)运用待定系数法,结合题目条件计算得,(2)分离参量,计算在上的最大值(3)转化为有且只有一个实数根,换元,关于的方程只有一个正实根,转化为函数问题解析:(1)设.由题意,得.∴,∵是偶函数,∴即.①∵有两相等实根,∴且②由①②,解得,∴.(2)若对任意,恒成立,只须在恒成立.令,,则.若对任意,恒成立,只须满足.∴.(3)函数与的图像有且只有一个公共点,即有且只有一个实数根,即有且只有一个实数根.令,则关于的方程(记为式)只有一个正实根.若,则不符合题意,舍去.若,则方程的两根异号,∴即.或者方程有两相等正根.解得∴.综上,实数取值范围是.点睛:本题是道综合题21、(1)(2)或【解析】(1)根据奇偶函数的定义可得,列出方程,结合对数运算公式解方程即可;(2)根据指数、对数函数的性质求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民防工程合同模板
- 小区工程分包合同模板
- 建工合同模板
- 房屋共同修建合同模板
- 楼面防水施工合同模板
- 房屋买卖借用合同模板
- 2024年双边投资合作协议
- 剧本授权合同模板
- 合同模板磨具费用分摊
- 招生运营合作合同模板
- (完整版)中职数学基础模块上册教案
- 部编版二年级上册语文《语文园地七》看图写话
- 设备供货安装方案(通用版)
- 幼儿园《3-6岁儿童学习与发展指南》健康领域知识试题及答案
- 英语学习重要性
- 过程控制:第六讲 PI调节和PID调节
- 《应用写作》精品课程教案
- 水墨中国风古风山水典雅通用PPT模板
- T∕CAIAS 001-2021 褐藻提取物 岩藻黄素
- 工业通风除尘课程设计
- 企业财务风险预警管理办法
评论
0/150
提交评论