版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
15/162022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)2.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到3.下列函数中哪个是幂函数()A. B.C. D.4.已知函数且,则实数的范围()A. B.C. D.5.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型6.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.7.直线的倾斜角为().A. B.C. D.8.已知实数,,,则,,的大小关系为()A. B.C. D.9.长方体中,,,则直线与平面ABCD所成角的大小A. B.C. D.10.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.11.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.12.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解二、填空题(本大题共4小题,共20分)13.若点在角终边上,则的值为_____14.数据的第50百分位数是__________.15.使得成立的一组,的值分别为_____.16.已知,则___________.(用含a的代数式表示)三、解答题(本大题共6小题,共70分)17.某市3000名市民参加“美丽城市我建设”相关知识初赛,成绩统计如图所示(1)求a的值;(2)估计该市参加考试的3000名市民中,成绩在上的人数;(3)若本次初赛成绩前1500名参加复赛,则进入复赛市民的分数线应当如何制定(结果保留两位小数)18.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<019.函数的部分图象如图所示.(1)求函数的单调递减区间;(2)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的π倍(纵坐标不变),得到函数的图象,若在上有两个解,求a的取值范围.20.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.21.已知函数为奇函数(1)求函数的解析式并判断函数的单调性(无需证明过程);(2)解不等式22.已知函数.(1)若且的最小值为,求不等式的解集;(2)若当时,不等式恒成立,求实数的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C2、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.3、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.4、B【解析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.5、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.6、A【解析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【详解】设函数在上是增函数,解得故选:A【点睛】本题主要考查了由复合函数的单调性求参数范围,属于中档题.7、B【解析】设直线的倾斜角为∵直线方程为∴∵∴故选B8、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.9、B【解析】连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.10、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B11、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.12、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.二、填空题(本大题共4小题,共20分)13、5【解析】由三角函数定义得14、16【解析】第50百分位数为数据的中位数,即得.【详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.15、,(不唯一)【解析】使得成立,只需,举例即可.【详解】使得成立,只需,所以,,使得成立的一组,的值分别为,故答案为:,(不唯一)16、【解析】利用换底公式化简,根据对数的运算法则求解即可【详解】因为,所以故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)1950;(3)进入复赛市民的分数应当大于或等于77.14.【解析】(1)根据频率之和为,结合频率分布直方图即可求得;(2)根据(1)中所求,求得成绩在的频率,根据频数计算公式即可求得结果;(3)根据频率分布直方图中位数的求解,结合已知数据,即可求得结果.【小问1详解】依题意,,故.【小问2详解】成绩在[70,90)上的频率为,所以,所求人数为3000×0.65=1950.【小问3详解】依题意,本次初赛成绩前1500名参加复赛,即求该组数据的中位数,因为≈77.14所以,进入复赛市民的分数应当大于或等于77.14.18、(1)奇函数(2)见解析(3)【解析】(1)先求函数f(x)的定义域,然后检验与f(x)的关系即可判断;(2)利用单调性的定义可判断f(x)在(﹣1,1)上单调性;(3)结合(2)中函数的单调性及函数的定义域,建立关于x的不等式,可求【详解】(1)的定义域为(-1,1)因为,所以为奇函数(2)为减函数.证明如下:任取两个实数,且,===<0<0,所以在(-1,1)上为单调减函数(3)由题意:,由(1)、(2)知是定义域内单调递减的奇函数即不等式的解集为(,)【点睛】本题主要考查了函数单调性及奇偶性的定义的应用,及函数单调性在求解不等式中的应用19、(1),(2)或【解析】(1)根据图像可得函数的周期,从而求得,再根据可求得,从而可得函数解析式,再根据余弦函数的单调性借口整体思想即可求出函数的单调增区间;(2)根据平移变换和周期变换可得,在上有两个解,即为与的图象在上有两个不同的交点,令,则作出函数在上的简图,结合图像即可得出答案.【小问1详解】解:由题图得,,,,,,,,又,,,令,,解得,,函数的单调递减区间为,;【小问2详解】解:将的图象向右平移个单位长度得到的图象,再将图象上的所有点的横坐标伸长为原来的π倍(纵坐标不变),得到函数的图象,若在上有两个解,则与的图象在上有两个不同的交点,令,则作出函数在上的简图,结合图像可得或,所以a的取值范围为或.20、(1)(2)【解析】(1)由图象得到,且,得到,结合五点法,列出方程求得,即可得到函数的解析式;(2)由题意,求得,,结合利用两角和的正弦公式,即可求解.【小问1详解】解:由图象可得,函数的最大值为,可得,又由,可得,所以,所以,又由图可知是五点作图法中的第三个点,因为,可得,因为,所以,所以.【小问2详解】解:因为,则,又因为,所以,由,则,有,所以.21、(1),单调递增(2)【解析】(1)直接由解出,再判断单调性即可;(2)利用奇函数和单增得到,解对数不等式即可.【小问1详解】因为函数的定义域为R,且是奇函数所以,即,解得,经检验,,为奇函数,所以函数解析式为,函数为单调递增的函数.【小问2详解】因为函数在R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论