2022-2023学年广东省汕头市潮南区数学高一上期末调研试题含解析_第1页
2022-2023学年广东省汕头市潮南区数学高一上期末调研试题含解析_第2页
2022-2023学年广东省汕头市潮南区数学高一上期末调研试题含解析_第3页
2022-2023学年广东省汕头市潮南区数学高一上期末调研试题含解析_第4页
2022-2023学年广东省汕头市潮南区数学高一上期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设,则A. B.0C.1 D.2.已知集合,,,则()A. B.C. D.3.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是4.已知集合,则下列关系中正确的是()A. B.C. D.5.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.6.甲、乙两人破译一份电报,甲能独立破译的概率为0.3,乙能独立破译的概率为0.4,且两人是否破译成功互不影响,则两人都成功破译的概率为()A.0.5 B.0.7C.0.12 D.0.887.设,则a,b,c的大小关系是A. B.C. D.8.已知,则A.2 B.7C. D.69.已知正数、满足,则的最小值为A. B.C. D.10.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.11.设:,:,则是的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件12.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数恒过定点为__________14.函数的图象为,以下结论中正确的是______(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③由的图象向右平移个单位长度可以得到图象;④函数在区间内是增函数.15.函数(且)的图像恒过定点______.16.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设矩形的周长为,其中,如图所示,把它沿对角线对折后,交于点.设,.(1)将表示成的函数,并求定义域;(2)求面积的最大值.18.记.(1)化简;(2)若为第二象限角,且,求的值.19.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围20.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值21.某单位安装1个自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积x(单位:平方米)成正比,比例系数为0.1,为了保证正常用水,安装后采用净水装置净水和自来水公司供水互补的用水模式.假设在此模式下,安装后该单位每年向自来水公司缴纳水费为,记y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和(1)写出y关于x的函数表达式;(2)求x为多少时,y有最小值,并求出y的最小值22.(1)计算:(2)已知,,,,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】详解】故选2、C【解析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解.【详解】因为,,所以,故选:C.3、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B4、C【解析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题.5、D【解析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【详解】阴影部分表示的集合为,故选【点睛】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题6、C【解析】根据相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲、乙分别能独立破译的概率为和,且两人是否破译成功互不影响,则这份电报两人都成功破译的概率为.C.7、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.8、A【解析】先由函数解析式求出,从而,由此能求出结果【详解】,,,故选A【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.当出现的形式时,应从内到外依次求值9、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题10、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.11、B【解析】解出不等式,根据集合的包含关系,可得到答案.【详解】解:因为:,所以:或,因为:,所以是的充分不必要条件.故选:B【点睛】本题考查了充分不必要条件的判断,两个命题均是范围形式,解决问题常见的方法是判断出集合之间包含关系.12、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】当时,,故恒过点睛:函数图象过定点问题,主要有指数函数过定点,对数函数过定点,幂函数过点,注意整体思维,整体赋值求解14、①②④【解析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象.【详解】由题意,,令,,当时,即函数的一条对称轴,所以①正确;令,,当时,,所以是函数的一个对称中心,所以②正确;当,,在区间内是增函数,所以④正确;的图象向右平移个单位长度得到,与函数不相等,所以③错误.故答案为:①②④.15、【解析】根据指数函数恒过定点的性质,令指数幂等于零即可.【详解】由,.此时.故图像恒过定点.故答案为:【点睛】本题主要考查指数函数恒过定点的性质,属于简单题.16、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;(2)【解析】(1)由题意得,则,根据,可得,所以,化简整理,即可求得y与x的关系,根据,即可求得x的范围,即可得答案;(2)由(1)可得,,则的面积,根据x的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:,则,因为在和中,,所以,即,所以在中,,所以,化简可得,因为,所以,解得,所以,;(2)由(1)可得,,所以面积,因为,所以,所以,当且仅当,即时等号成立,此时面积,即面积最大值为【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.18、(1)见解析;(2).【解析】(1)直接利用诱导公式化简即可;(2)由求出,代入即可求解.【详解】(1)(2)因为为第二象限角,且,所以,所以.19、(1)奇函数(2)【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解20、a=-1或a=2【解析】函数的对称轴是,根据与区间的关系分类讨论得最大值,由最大值求得【详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=(舍去)(3)当a>1时,f(x)max=f(1)=a,∴a=2综上可知,a=-1或a=2【点睛】关键点点睛:本题考查二次函数最值问题.二次函数在区间最值问题,一般需要分类讨论,分类标准是对称轴与区间的关系,如果,求最小值时分三类:,,,求最大值只要分两类:和,类似分类21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论