版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.2.若条件p:,q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件3.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.434.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.5.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.6.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.27.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则8.如图一铜钱的直径为毫米,穿径(即铜钱内的正方形小孔边长)为毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为A. B.C. D.9.集合,集合,则等于()A. B.C. D.10.设命题,则为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数y=loga(2-ax)在[0,1]上单调递减,则a的取值范围是________12.已知圆心为,且被直线截得的弦长为,则圆的方程为__________13.函数零点的个数为______.14.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______15.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为______________16.如果满足对任意实数,都有成立,那么a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数在定义域内存在实数,使得成立,则称函数有“飘移点”Ⅰ试判断函数及函数是否有“飘移点”并说明理由;Ⅱ若函数有“飘移点”,求a的取值范围18.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值19.在平面直角坐标系中,已知角的终边与以原点为圆心的单位圆交于点.(1)求与的值;(2)计算的值.20.已知函数.(1)求f(x)的定义域及单调区间;(2)求f(x)的最大值,并求出取得最大值时x的值;(3)设函数,若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.21.化简求值:(1)已知,求的值;(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础2、B【解析】由条件推结论可判断充分性,由结论推条件可判断必要性【详解】由不能推出,例如,但必有,所以p是q成立的必要不充分条件.故选:B.3、C【解析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【点睛】本题考查系统抽样,等间距抽取,属于简单题.4、A【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可【详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A5、C【解析】设球的半径为,根据题意知球心到平面的距离,截球所得截面圆的半径为1,由,截面圆半径,球半径构成直角三角形,利用勾股定理,即可求出球半径,进而求出球的表面积.【详解】如图所示,设球的半径为,因为,所以,又因为截球所得截面的面积为,所以,在中,有,即,所以,故球的表面积,故选:C.【点睛】本题主要考查球的基本应用,答题关键点在于明确球心到截面的距离,截面圆半径,球半径三者可构成直角三角形,进而满足勾股定理.6、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.7、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.8、B【解析】由题意结合几何概型公式可得:该粒米未落在铜钱的正方形小孔内的概率为:.本题选择B选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,通用公式:P(A)=.9、B【解析】直接利用交集的定义求解即可.【详解】由题得.故选:B10、D【解析】根据全称量词否定的定义可直接得到结果.【详解】根据全称量词否定的定义可知:为:,使得.故选:.【点睛】本题考查含量词的命题的否定,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1,2)【解析】分类讨论得到当时符合题意,再令在[0,1]上恒成立解出a的取值范围即可.【详解】令,当时,为减函数,为减函数,不合题意;当时,为增函数,为减函数,符合题意,需要在[0,1]上恒成立,当时,成立,当时,恒成立,即,综上.故答案为:(1,2).12、【解析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=2513、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.14、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.15、-1【解析】根据题中条件可先排除①,②两个图象,然后根据③,④两个图象都经过原点可求出a的两个值,再根据二次函数图象的开口方向就可确定a的值.【详解】∵b>0∴二次函数的对称轴不能为y轴,∴可排除掉①,②两个图象∵③,④两个图象都经过原点,∴a2﹣1=0,∴a=±1∵当a=1时,二次函数图象的开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故答案为:-1【点睛】本题考查了二次函数的图象和性质,做题时注意题中条件的利用,合理地利用排除法解决选择题16、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数有“飘移点”,函数没有“飘移点”.证明过程详见解析(Ⅱ)【解析】Ⅰ按照“飘移点”的概念,只需方程有根即可,据此判断;Ⅱ由题得,化简得,可得,可求>,解得a范围【详解】Ⅰ函数有“飘移点”,函数没有“飘移点”,证明如下:设在定义域内有“飘移点”,所以:,即:,解得:,所以函数在定义域内有“飘移点”是0;设函数有“飘移点”,则,即由此方程无实根,与题设矛盾,所以函数没有飘移点Ⅱ函数的定义域是,因为函数有“飘移点”,所以:,即:,化简可得:,可得:,因为,所以:,所以:,因为当时,方程无解,所以,所以,因为函数的定义域是,所以:,即:,因为,所以,即:,所以当时,函数有“飘移点”【点睛】本题考查了函数的方程与函数间的关系,即利用函数思想解决方程根的问题,利用方程思想解决函数的零点问题,由转化为关于方程在有解是本题关键.18、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,结合作差法、分类讨论思想求的单调性.(3)由题设得且,结合(2)有在上递减,结合函数的区间值域,求参数a、n即可.【小问1详解】由题设有,可得函数定义域为,,所以为奇函数.【小问2详解】令,则,又,则,当时,,即,则在上递增.当时,,即,则在上递减.【小问3详解】由,则,即,结合(2)知:在上递减且值域为,要使在值域是,则且,即,所以,又,故.综上,,【点睛】关键点点睛:第三问,注意,即有在上递减,再根据区间值域求参数.19、(1),;(2).【解析】(1)由任意角的三角函数的定义求出,,,再利用两角和的余弦公式计算可得;(2)利用诱导公式将式子化简,再将弦化切,最后代入计算可得;【详解】解:(1)由三角函数定义可知:.,;(2)原式因为,原式.20、(1)定义域为(﹣1,3);f(x)的单调增区间为(﹣1,1],f(x)的单调减区间为[1,3);(2)当x=1时,函数f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用对数的真数大于零即可求得定义域,根据复合函数的单调性“同增异减”即可求得单调区间;(2)根据函数的单调性即可求解;(3)将f(x)≤g(x)转化为x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,结合基本不等式即可求解.【详解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定义域为(﹣1,3),令t=2x+3﹣x2,则,∵为增函数,x∈(﹣1,1]时,t=2x+3﹣x2为增函数;x∈[1,3)时,t=2x+3﹣x2为减函数;故f(x)的单调增区间为(﹣1,1];f(x)的单调减区间为[1,3)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论