




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是2.函数图像大致为()A. B.C. D.3.已知集合,,则A. B.C. D.4.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.5.直线的倾斜角是()A.30° B.60°C.120° D.150°6.已知实数集为,集合,,则A. B.C. D.7.已知角与角的终边关于直线对称,且,则等于()A. B.C. D.8.下列函数中,在其定义域内单调递减的是()A. B.C. D.9.已知,,则下列不等式正确的是()A. B.C. D.10.已知函数,,其函数图象的一个对称中心是,则该函数的一个单调递减区间是()A. B.C. D.11.设,,,则,,三者的大小关系是()A. B.C. D.12.已知实数a、b,满足,,则关于a、b下列判断正确的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知平面向量,,若,则______14.设且,函数,若,则的值为________15.已知函数的零点为1,则实数a的值为______16.已知指数函数的解析式为,则函数的零点为_________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)判断函数的奇偶性,并证明;(2)设函数,若对任意的,总存在使得成立,求实数m的取值范围.18.某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x与利润y(单位:万元)分别满足函数关系与(1)求,与,的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值19.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)20.已知函数f(x)=2sin(ωx+φ)+1()的最小正周期为π,且(1)求ω和φ的值;(2)函数f(x)的图象纵坐标不变的情况下向右平移个单位,得到函数g(x)的图象,①求函数g(x)的单调增区间;②求函数g(x)在的最大值21.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.22.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B2、B【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B3、A【解析】由得,所以;由得,所以.所以.选A4、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.5、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.7、A【解析】先在角终边取一点,利用角与角的终边关于直线对称写出对称点的坐标,即可求得,进而求得.【详解】由知角终边在第一或第二象限,在终边上取一点或,又角与角的终边关于直线对称,故角的终边必过点或,故,则.故选:A.8、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B9、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.10、D【解析】由正切函数的对称中心得,得到,令可解得函数的单调递减区间.【详解】因为是函数的对称中心,所以,解得因为,所以,,令,解得,当时,函数的一个单调递减区间是故选:D【点睛】本题考查正切函数的图像与性质,属于基础题.11、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D12、D【解析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【详解】.构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.又∵,∴a>b>2故选:D.【点睛】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解【详解】由题意知,平面向量,,则;因为,所以,解得故答案为【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题.14、【解析】根据函数的解析式以及已知条件可得出关于实数的等式,由此可解得实数的值.【详解】因为,且,则.故答案为:.15、【解析】利用求得的值.【详解】由已知得,即,解得.故答案为:【点睛】本小题主要考查函数零点问题,属于基础题.16、1【解析】解方程可得【详解】由得,故答案为:1三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)偶函数,证明见解析(2)【解析】(1)为偶函数,利用偶函数定义证明即可;(2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值,分析即得解.【小问1详解】为偶函数证明:,故,解得的定义域为,关于原点对称,为偶函数【小问2详解】若对任意的,总存在,使得成立则又,当且仅当,即取等号所以所求实数m的取值范围为18、(1),,,(2)分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.【解析】(1)代入点的坐标,求出,与,的值;(2)在第一问的基础上,表达出总利润的关系式,利用配方求出最大值.【小问1详解】将代入中,,解得:,将代入中,,解得:,所以,,,.【小问2详解】设分配生产乙商品的投资为m(0≤m≤20)万元、甲商品的投资为万元,此时的总利润为w,则,因为0≤m≤20,所以当,即时,w取得最大值,即分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.19、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小题主要考查具体的函数模型在实际问题中的应用,考查数形结合、化归转化的数学思想方法,以及应用意识和运算求解能力20、(1);(2)①增区间为;②最大值为3.【解析】(1)直接利用函数的周期和函数的值求出函数的关系式(2)利用函数的平移变换求出函数g(x)的关系式,进一步求出函数的单调区间(3)利用函数的定义域求出函数的值域【详解】(1)的最小正周期为,所以,即=2,又因为,则,所以.(2)由(1)可知,则,①由得,函数增区间为.②因为,所以.当,即时,函数取得最大值,最大值为.【点睛】本题考查正弦型函数性质单调性,函数的平移变换,函数的值域的应用.属中档题.21、(1)证明见解析(2)【解析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离.【小问1详解】连接交于,连接,因为四边形为平行四边形,所以,因为点E是PD的中点,所以∥,因为平面,平面,所以∥平面,【小问2详解】因为∥,,所以,,因为平面,平面,所以,因为,、平面,所以平面,因为平面,所以,在直角中,,同理,在等腰中,,取的中点,连接,则∥,,因平面,所以平面,,设D到平面AEC的距离为,由,得,所以,得,所以D到平面AEC距离为22、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论