版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-42.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,则球O的表面积是()A. B.C. D.3.已知aR且a>b,则下列不等式一定成立的是()A.> B.>abC.> D.a(a—b)>b(a—b)4.若集合,则()A.或 B.或C.或 D.或5.下列命题中正确的是()A.第一象限角小于第二象限角 B.锐角一定是第一象限角C.第二象限角是钝角 D.平角大于第二象限角6.下列函数是偶函数,且在上单调递减的是A. B.C. D.7.将函数的图象向左平移个单位长度,所得图象的函数解析式为A. B.C. D.8.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.89.下列函数是幂函数的是()A. B.C. D.10.已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3} B.{0,1,4}C.{0,1,3} D.{1,3,4}二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在△ABC中,,面积为12,则=______12.=______13.已知,且,则实数的取值范围为__________14.已知α为第二象限角,且则的值为______.15.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,E为AD的中点,过A,D,N的平面交PC于点M.求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.17.已知,且(1)求的值;(2)求的值18.已知函数的部分图象如图所示(1)求函数的解析式:(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象①当时,求函数的值域;②若方程在上有三个不相等的实数根,求的值19.已知函数是定义在上的奇函数,且.(1)确定函数的解析式,判断并证明函数在上的单调性;(2)若存在实数,使得不等式成立,求正实数的取值范围.20.已知函数.(1)在给定的坐标系中,作出函数的图象;(2)写出函数的单调区间(不需要证明);(3)若函数的图象与直线有4个交点,求实数的取值范围.21.已知函数的最小正周期为,其中(1)求的值;(2)当时,求函数单调区间;(3)求函数在区间上的值域
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题2、A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC=∴SA⊥AC,SB⊥BC,SC=∴球O的半径R==1∴球O的表面积S=4πR2=4π故选A点睛:本题考查球的表面积的求法,合理地作出图形,确定球心,求出球半径是解题的关键3、D【解析】对于A,B,C举反例判断即可,对于D,利用不等式的性质判断【详解】解:对于A,若,则,所以A错误;对于B,若,则,此时,所以B错误;对于C,若,则,此时,所以C错误;对于D,因为,所以,所以,所以D正确,故选:D4、B【解析】根据补集的定义,即可求得的补集.【详解】∵,∴或,故选:B【点睛】本小题主要考查补集的概念和运算,属于基础题.5、B【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解.【详解】解:为第一象限角,为第二象限角,故A错误;因为锐角,所以锐角一定是第一象限角,故B正确;因为钝角,平角,为第二象限角,故CD错误.故选:B.6、D【解析】函数为奇函数,在上单调递减;函数为偶函数,在上单调递增;函数为非奇非偶函数,在上单调递减;函数为偶函数,在上单调递减故选D7、A【解析】依题意将函数的图象向左平移个单位长度得到:故选8、A【解析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【详解】根据条件:;故选A【点睛】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.9、C【解析】由幂函数定义可直接得到结果.【详解】形如的函数为幂函数,则为幂函数.故选:C.10、C【解析】根据并集的定义可得集合A中一定包含的元素,再对选项进行排除,可得答案.【详解】∵集合A∪B={0,1,2,3,4},B={1,2,4};∴集合A中一定有元素0和3,故可排除A,B,D;故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【详解】由题意,在中,,,面积为12,则,解得∴故答案为【点睛】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题12、【解析】由题意结合指数的运算法则和对数的运算法则整理计算即可求得最终结果.【详解】原式=3+-2=.故答案为点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题13、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性14、【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求【详解】由,得,得或.α为第二象限角,,.故答案:.15、1【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:1三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见证明(2)见证明(3)见证明【解析】(1)先证明四边形DENM为平行四边形,利用线面平行的判定定理即可得到证明;(2)先证明AD⊥平面PEB,由AD∥BC可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB可得PB⊥MN,由已知得PB⊥AN,即可证得PB⊥平面ADMN,利用面面垂直的判定定理即可得到证明.【详解】(1)∵AD∥BC,BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC.又平面ADMN∩平面PBC=MN,∴AD∥MN.又∵AD∥BC,∴MN∥BC又∵N为PB的中点,∴M为PC的中点,∴MN=BC∵E为AD中点,DE=AD=BC=MN,∴DEMN,∴四边形DENM为平行四边形,∴EN∥DM.又∵EN⊄平面PDC,DM⊂平面PDC,∴EN∥平面PDC(2)∵四边形ABCD是边长为2的菱形,且∠BAD=60°,E为AD中点,∴BE⊥AD.又∵PE⊥AD,PE∩BE=E,∴AD⊥平面PEB.∵AD∥BC,∴BC⊥平面PEB(3)由(2)知AD⊥PB又∵PA=AB,且N为PB的中点,∴AN⊥PB∵AD∩AN=A,∴PB⊥平面ADMN.又∵PB⊂平面PBC,∴平面PBC⊥平面ADMN.【点睛】本题考查线面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,属于基本知识的考查17、(1);(2)【解析】(1)将条件化为,然后,可得答案;(2)由第一问可得,然后,解出即可.【详解】(1)因为,且,所以故又因为,所以,即,所以所以(2)由(1)知,又因为,所以.因为,,所以,即,解得或因为,所以,所以18、(1);(2)①;②.【解析】(1)由图象得A、B、,再代入点,求解可得函数的解析式;(2)①由已知得,由求得,继而求得函数的值域;②令,,做出函数的图象,设有三个不同的实数根,有,,继而得,由此可得答案.【小问1详解】解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;【小问2详解】解①:由已知得,当时,,所以,所以,所以,所以函数的值域为;②当时,,令,则,令,则函数的图象如下图所示,且,,,由图象得有三个不同的实数根,则,,所以,即,所以,所以,故.19、(1),函数在上单调递减,证明见解析.(2)【解析】(1)根据,得到函数解析式,设,计算,证明函数的单调性.(2)根据函数的奇偶性和单调性得到,设,求函数的最小值得到答案.【小问1详解】函数是定义在上的奇函数,则,,解得,,故.在上单调递减,证明如下:设,则,,,,故,即.故函数在上单调递减.【小问2详解】,即,,,故,即,设,,,,故,又,故.20、(1)图象见解析;(2)单调增区间为;单调减区间是为;(3).【解析】(1)分段依次作出图象即可;(2)看图写出单调区间即可;(3)作出直线图象,数形结合得到实数的取值范围即可.【详解】解:(1)作图如下:(2)看图可知函数的单调增区间为,函数的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 范本新学期学习计划范文集锦5篇
- 专业技术工作总结范文
- 个人年度述职报告范文
- DB12T 545-2014 南水北调工程现场项目管理规范
- 中级财务实训工作心得
- 个人试用期转正述职报告
- 探究实验遵循的一般原则
- 防伪油墨 第2部分:磁性防伪油墨 征求意见稿
- 戒子规课件教学课件
- 义乌市七校七年级上学期语文11月期中联考试卷
- 2024中国罕见病行业趋势观察报告
- 葛洲坝毕业实习报告
- 创作属于自己的戏剧舞台美术设计
- 苏教版2022-2023五年级数学上册全册教材分析
- 埋地钢质管道腐蚀与防护
- 人工智能对教育考试的改革与应用
- 会议宴会接待通知单
- 数字化人才管理
- 血液循环系统课件
- 起重机械自查报告
- ZJ40J钻机技术参数
评论
0/150
提交评论