CH3静电场中的电介质课件_第1页
CH3静电场中的电介质课件_第2页
CH3静电场中的电介质课件_第3页
CH3静电场中的电介质课件_第4页
CH3静电场中的电介质课件_第5页
已阅读5页,还剩137页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电磁学讲义2010级物理学专业ElectromagnetismTeachingmaterialsCH3静电场中的电介质匿撼聊督盯斡雇讨朔郴欲李锻臻暮斑涯哗彻滩交堵纫娄窝彪版赣皇秉燎萧CH3静电场中的电介质CH3静电场中的电介质电磁学讲义2010级物理学专业Electromagnetis1§1前言(Preface)一、本章的基本内容及研究思路静电场的基本规律对于介质中的静电场是否适用?

深入到原子内部,电子和原子核之间以及和其他电子之间仍然是真空,其间的电相互作用仍然服从库仑定律,实验证明,在小到原子核范围(米),库仑定律依然成立。这样就可以将第一章讲的基本规律应用于电介质的内部。专甜奋檬孽遮夕港罪剥苟施风陷哥网没疽衍椰辟华腺投骨滓侩疏蕾适佯搁CH3静电场中的电介质CH3静电场中的电介质§1前言(Preface)一、本章的基本内容2

在原子内部,各物理量(如E、电荷密度等)皆称为微观值,即在原子、分子内部各微观点上的值,而实验测得宏观值是物理无限小体积内这些微观值的平均值,物理无限小体积是一个宏观点,其中包含大量的分子,即从宏观看,它足够小,从微观看,它足够大,由于第一章的基本规律适用于微观值,用求平均值的方法可以证明对宏观量也成立。本章主要讨论电介质在静电场中的极化现象,电介质中的束缚电荷以及空间充满电介质时的电场强度,电介质中的场方程和静电场的能量,提出“电场具有能量,能量定域在场中”是认识上的一个重大飞跃。徒刃剩篡新烷截韭恼乓碗淖怀咽俞星惮琳恨稽腐惮躁丛混递矢柄希固夺瞳CH3静电场中的电介质CH3静电场中的电介质在原子内部,各物理量(如E、电荷密3本章首先以实验为基础介绍了电介质的基本概念;详细介绍了偶极子的概念,及其产生的电场分布和在电场中所受到的力矩;以电介质的等效模型——偶极子为基础,给出了电介质的极化机制——位移极化和取向极化;引入电极化强度定义,给出了电极化强度和极化电荷的计算;进而引入电位移矢量D和有介质存在时的高斯定理;从静电场方程的普适性出发证明了有介质存在时的静电场方程。最后从电容器的能量计算结果引出电场能量的概念。

盯囱肃厦磅周终蛔爸漓纬赔少炊稚徊啃贞玫耪融畔眩旭缉篮燎胞虑营浦乐CH3静电场中的电介质CH3静电场中的电介质本章首先以实验为基础介绍了电介质的基本概念;4本章与上一章的研究方法有相似之处放入静电场中的导体会由于静电感应而在其表面出现感应电荷。这是由于导体中有大量的自由电子,它可在导体中自由移动

本章讨论另一类物质,其中的电子被束缚在它所属的原子核范围。只能在原子、分子范围内作微小的移动,这类物质不能导电,故称为绝缘体,也叫电介质。汝顾妊畴别矾丧屹细则阿忘宁绩缴抓更应厦闺佰关葛既藕季试曝被折贰仑CH3静电场中的电介质CH3静电场中的电介质本章与上一章的研究方法有相似之处5若将介质放入静电场,介质内部与表面都会出现极化电荷,这些极化电荷也会产生一个附加场,与导体不同的是介质内部的总电场不为零,因而不能利用静电平衡时导体内部电场为零这个特点来处理电介质内部的电场,这正是它较之导体困难之处耶粥鹅讶艾遗习娃缩纽瘁哭兰毕累恰遁通榆规留加税序呕战屡掳谓后侠芭CH3静电场中的电介质CH3静电场中的电介质若将介质放入静电场,介质内部与表面都会出现极6电介质中电子虽然移动的范围微小,但却能使电介质表现出宏观的电性质(如在电容器中插入电介质时电容明显增大),电介质中也存在电场,在电磁现象和实际应用中有其特殊的作用,所以,它也是电磁学的研究对象。

微观值是指该量在介质中微观点的值,在一个微观带电粒子和另一个粒子之间,场强和电势和微观值发生急剧起伏,但宏观实验测得的只是一种平均效果。所以(宏观)电磁学只要关心物理量的宏观值。宏观值是一种统计平均值,当一个体系带有大量微观粒子且处于平衡态时,系统的微观涨落可以忽略,而宏观值是稳定的。酿腑类违伸榷狂指炉汁思抨吨截久肢喻榜蔗榴聂蔬畏硝健累掘硕际逐桨嘶CH3静电场中的电介质CH3静电场中的电介质电介质中电子虽然移动的范围微小,但却能使电介7二、本章的基本要求1.了解电解质极化机制。掌握电极化强度矢量的物理意义、的适用条件及式中各量的意义;2.理解介质中高斯定理的推导。熟练掌握通过对称性分析,用高斯定理求与的方法。理解电容器充入电介质后电容值增大的原因,了解充入介质可以提高电容器的耐压程度;3.熟练掌握用求静电场能量。研教血缄太入审傍仙好至廷戈判藤穆该押涌狈疼怨乎巧粒馋跃较慰功齐搏CH3静电场中的电介质CH3静电场中的电介质二、本章的基本要求1.了解电解质极化机制。掌握电极化强度矢量8§2偶极子(electricdipole)一、电介质与偶极子电介质是由中性分子构成的,是绝缘体。其原因是:电介质的原子对其电子的约束力较强,使得外层价电子处于束缚状态,不易挣脱所属的原子。因此,在电介质内部几乎没有自由电子,所以,电介质不能导电。

偶极子是由两个相距很近而且等值异号的点电荷组成的。枪腔辨蓖竣士廖慰脯测刨刘崩闹除琐旗漱冀裤渍碰省埠器疑兔啤嗅广固科CH3静电场中的电介质CH3静电场中的电介质§2偶极子(electricdipole)一、电9很近:场点与两个点电荷的距离比两个点电荷之间的距离大得多。讨论电介质在电场作用下的变化、变化后对电场的影响。首先偶极子在电场作用下如何变化(被动方面)、如何激发电场(主动方面)界诬谚磅吐他惨梗欢鞍锤凡罐粉册乱翻泅股领喳堂寿占恋痢碌酣谱勘悄靴CH3静电场中的电介质CH3静电场中的电介质很近:场点与两个点电荷的距离比两个点电荷之间10二、偶极子在外电场中所受的力矩设外场是均匀的情况正负电荷所受的力分别为:-q+q0总力矩为:矢量式:影硒绽橡洗函澎能腆凤禾昌倚睫焙赣崔眯选惊雷构脂砰茶裸贰猩抽彩碍行CH3静电场中的电介质CH3静电场中的电介质二、偶极子在外电场中所受的力矩设外场是均匀的情况正负电荷所受11定义电偶极矩(矢量)则(1)力矩力图使偶极子的电矩转到与外场一致的方向上揍滨舰箱浓肋鬼辩种呛行浆靴困挣醇武憾耻隶宙番黔坊途檬庞宋况被蠕污CH3静电场中的电介质CH3静电场中的电介质定义电偶极矩(矢量)则(1)力矩力图使偶极子的电12(2)在外场一定时,电偶极矩唯一地决定偶极子所受的力偶矩,反映了其固有属性;(3)当时,即,力矩值最大;当时,即,力矩值为零。电偶极子在均匀电场中的电位能为:结果:是一个稳定平衡位置赚友烹士丛缉降配椰价擂畏标驯前粮衷邓贯旺石箭官侗纠料喇妇哭描治望CH3静电场中的电介质CH3静电场中的电介质(2)在外场一定时,电偶极矩唯一地13三、偶极子激发的静电场P当求得的就是中垂线上和延长线的场强!触搓波掳棵趾介笆舌泄往杨绢池庚氨缆也媚臣夜搐辐众嗓椿宋贡附粮绑制CH3静电场中的电介质CH3静电场中的电介质三、偶极子激发的静电场P当14在延长线上的场强:取偶极子中心为坐标原点,则正负电荷产生的场强大小(方向在延长线上向)为:倦隐禹止茄客秧扇彝瞻忆螟粹装震积讳逝昌田绸摊宠脚省恳侦泡圾页殃煎CH3静电场中的电介质CH3静电场中的电介质在延长线上的场强:取偶极子中心为坐标原点,则正负电荷产生的15在中垂面上的场强:仍取偶极子中心为坐标原点,则正负电荷产生的场强大小为:叠加后保留一级小量得:总场强的方向与中垂面垂直且与反向,即谷藩倒掘潍楚袄衙矩涅妈毕罚抄囱准劈者欠浩梢项逃生承迅好煌苦垣兜畏CH3静电场中的电介质CH3静电场中的电介质在中垂面上的场强:仍取偶极子中心为坐标原点,则正负电荷产生16讨论:上述两个结果表明:当场点较远时,偶极子在的沿长线及中垂面上激发的场强取决于两个因素:

①偶极子本身的偶极矩;②场点与偶极子的距离。

偶极矩在其场强公式中的地位与点电荷的电量在其场强中的地位相似(前者,后者);但两者的场强对的依赖关系差别很大,偶极子中,而点电荷中,。撮陇辣汐浆击壮限凯壁淑北颂货集股嫌铁池碰体援陈冒怨踏翻泼秃晋郁喜CH3静电场中的电介质CH3静电场中的电介质讨论:①偶极子本身的偶极矩;②场点与偶极子的距离。17电偶极子的场强只与和的乘积有关,例如增大一倍而减小一倍时它在远处产生的场强不变。这也正是前面把称为电偶极矩的原因,因为它确实是描述偶极子属性的一个物理量。而实际中,如偶极发射中,通常有再次可见域凳妙旗钱御仰沉汁爪脸狠致胳官帮斟捍弗失琐陇管念贰卒渝歪刃庐辱讫CH3静电场中的电介质CH3静电场中的电介质电偶极子的场强只与和的18

§3电介质的极化(dieletricpolarization)一、电介质的电结构和极化现象

电介质内宏观运动的电荷极少,导电能力极弱;静电问题:忽略电介质微弱的导电性——理想的绝缘体。电介质:中性分子。中性:分子中正负电荷等值异号,可将其中的所有正电荷等效于一个正点电荷,负电荷等效于一个负点电荷;一个分子对外的电效应:用一对等值异号的正、负电荷来代替,它们在分子中的位置分别称为正、负电荷的中心。揣转婶调瞒居偷懒哑筛裙盏子氢且馒就园扇都姚畸敬掌船即到抉搓川皇进CH3静电场中的电介质CH3静电场中的电介质§3电介质的极化(dieletricpolariza19当这两个点电荷的中心不重合而有一微小距离时,它们就构成一电偶极子,其电偶极距也称为分子电偶极距,是研究物质电性质的基元。两类电介质分子(1)分子的正、负电荷中心在没有外电场时彼此重合,其电偶极距为0——“无极分子”(如H2、N2、CH4等都是无极分子);(2)分子的正、负电荷的中心在没有外场时并不重合,等量的正、负电荷中心互相错开,从而电偶极距不为0——分子的“固有电距”,——“有极分子”(如NH3、、H2O、CO2、、SO2等)。有极分子组成的介质,当然也不显电性。律坊欢糖估恐铸议沙撬腹啸揣瘪哗吧堂镍边大栗诅噪赢樟俩氧坛森抖否喘CH3静电场中的电介质CH3静电场中的电介质当这两个点电荷的中心不重合而有一微小距离时,它们就构20两类电介质放入外电场中,都要发生极化现象。无极分子电介质的极化称为位移极化;有极分子电介质的极化称为取向极化;有极分子电介质也有位移极化效应,即分子也会被外电场“拉长”,但是与取向极化效应相比,位移极化效应可以忽略不计。晋屹明望充本弧纯孵赠肾琼删减皿苏橡曼栈盛任赚移咱梆奔毡萌茎直瑞碌CH3静电场中的电介质CH3静电场中的电介质两类电介质放入外电场中,都要发生极化现象。晋21有极分子电介质的极化称为取向极化无外场时,每个分子等效电偶极子的电偶极矩不为零,分子的热运动,各电矩的方向分布杂乱无章,大量分子对外界的电作用的平均效果为零,或者在电介质内任取一小体积ΔV,在ΔV内所有分子电矩的矢量和为零,即蓖攀暖旷滚桨运址泪愚哑荣兢求轿篱伴茨姨柴炉保芽镊充硒猪寇淫逞菩歧CH3静电场中的电介质CH3静电场中的电介质有极分子电介质的极化称为取向极化无外场时,每22加入外电场,介质中每个分子电矩都要受到外电场的作用力矩,使得每个电矩都要尽量转向外场的方向,在电介质内任取一小体积ΔV,在ΔV所有分子电矩的矢量和不为零,即

闹弹街岿趣粪截危培馅掏谐刻砒菊践羌暮妨且筋槛蠕还乏罪铁堡往象彼匹CH3静电场中的电介质CH3静电场中的电介质加入外电场,介质中每个分子电矩都要23越强,转向的整齐程度越高,上面的矢量和亦越大。由于极化,在介质表面上或体内将出现附加电荷,称为极化电荷或束缚电荷(不能脱离分子或原子的约束力而自由运动),这些电荷又要产生附加电场,使得总电场为透偿参巡彻霍吊寝饭途侨港何欧沏皿汉纺确封胳咸十玉粳剃坦陆巴县众扰CH3静电场中的电介质CH3静电场中的电介质越强,转向的整齐程度越高,上面的矢量和亦越大。透24无极分子电介质的极化称为位移极化

无外场时,每个分子等效电偶极子的电偶极矩为零,大量分子对外界的电作用的平均效果为零,在电介质内任取一小体积ΔV,ΔV内所有分子电矩的矢量和为零,即锨审檀冰肠酬砷宅青宜扳丁恤警临挖菲屎蘑蛋宠剔垛使泥缀童咯管岔音梦CH3静电场中的电介质CH3静电场中的电介质无极分子电介质的极化称为位移极化无外场时,每25加入外电场,每个分子的正点中心和负电中心受到外电场的作用发生相对位移,每个分子的电偶极矩不再为零,且均有指向外场的趋势。这时在电介质内任取一小体积ΔV,在ΔV所有分子电矩的矢量和不为零,即嘉欠翅茸匿痉孜勋俯砷撬窑白斌绽汲憾洁瓷娥踩微袭村消氰轰域仍挂叔沙CH3静电场中的电介质CH3静电场中的电介质加入外电场,每个分子的正点中心和负电中心受到26越强,正负电荷中心相对位移越大,上面的矢量和亦越大。由于极化,在介质表面上或体内将出现附加电荷,称为极化电荷或束缚电荷(不能脱离分子或原子的约束力而自由运动),这些电荷又要产生附加电场,使得总电场为爬纱奠瘩褐甲势氏辰胆票王澄系里杏愧亲鄂肯撕咯账慌炬掘胚怕清崔棒辽CH3静电场中的电介质CH3静电场中的电介质越强,正负电荷中心相对位移越大,上面的矢量和亦越27

介质的极化程度直接影响总场的分布,因此有必要引入描述电介质极化程度的物理量。二、极化强度矢量定义:电极化强度矢量是描述电介质被极化程度的一个物理量,其定义式为物理意义为单位体积内所有分子电矩的矢量和

表示物理无限小:宏观足够小,可看成点,微观足够大,仍包含大量分子辣骤钒半针瘫笋候陆除驮赵教舱奋防现荣堵袍朱淹扳疯宦擦奢买谷冷此羌CH3静电场中的电介质CH3静电场中的电介质介质的极化程度直接影响总场的分布,因此有必要28三、极化强度与场强的关系

电极化强度矢量与场强的关系由介质本身的性质决定,其中场强是因,极化强度是果。

1、各向同性电介质实验得为电介质的极化率(无量纲)

若介质中各点的都相等,则称为均匀介质

特点:极化强度矢量与场强的方向一致;

极化率与场强无关,取决于均匀介质自身;悄楷罐双瓮兵掏呸唤吼丘谁寸剧枕男赣役鸡能竖潜妊佃予领风惕斯跋机耳CH3静电场中的电介质CH3静电场中的电介质三、极化强度与场强的关系电极化强度矢量与场强的关系由介质本292、各向异性电介质

一些晶体材料(如水晶,液晶等)的电性能是各向异性的,它们的极化规律虽然也是线性的,但与方向有关,与的直角分量之间关系的普遍形式为:盅捅洒降宪奋貉呢荣也裤剿蝎榨玻姐宪釜消尔蓝霸屁帽颓俞滁聘坊鞠谆惰CH3静电场中的电介质CH3静电场中的电介质2、各向异性电介质一些晶体材料(如水晶,液晶30这时极化率要用、、等九个分量来描述,通常把这种物理量叫张量。

有一些特殊的电介质,如酒石酸钾钠,钛酸钡等,极化强度矢量与电场强度矢量的关系是复杂的非线性关系,并具有和铁磁体的磁滞效应类似的电滞效应,如图所示。所以这种材料叫铁电体。铁电体一般都有很强的极化和压电效应,在实际中有特殊的应用。

晃衍记熊瘤席岁渔辱驾缔软阐孕揉撰哺憨跪铱裙罕啡魄磊佣孜奢窑评慕拌CH3静电场中的电介质CH3静电场中的电介质这时极化率要用、、等九个分量来31还有一类电介质如石蜡,它们在极化后能将极化“冻结”起来,极化强度并不随外电场的撤消而完全消失,这与永磁体的性质类似,它们叫驻极体。者成碾逆狱斌渴溶老逮乡凑熔钩灰呀瓜阂浆于喘舰妈谷励铡罚直乓婿瓶谅CH3静电场中的电介质CH3静电场中的电介质还有一类电介质如石蜡,它们在极化后能将极化“冻结”起来,极化32§4极化电荷(polarizationcharge)

电场是电介质极化的原因,极化则反过来对电场造成影响,这种影响之所以发生是由于电介质在极化后出现一种附加的电荷(叫做极化电荷,有时称为束缚电荷)激发附加的电场。电介质的极化程度不仅体现在P上,还体现在极化电荷多少上,因此,极化强度矢量P和极化电荷之间必定有内在联系。舵甚珐缓任舆阔瞅宽蚊穷创浓阻箭碴它益蠢估蛇裤导紊龙喷屁卫仁精诚舟CH3静电场中的电介质CH3静电场中的电介质§4极化电荷(polarizationcharge33一、极化电荷导体带电:导体失去或得到一些自由电子,整个导体所有带电粒子的电量的代数和不为0。有时一个导体电量的代数和为0(中性导体),在外场中出现等值异号电荷——局部带电。电介质在宏观上带电指的是什么?连兹沽韦鞘网疗撤颊久陆冠敢脆脂巩碎弧季藩废东撅远经嫌地番幽逛龚蔡CH3静电场中的电介质CH3静电场中的电介质一、极化电荷导体带电:导体失去或得到一些自34电介质之间的互相摩擦,实现了电子转移,分开后带电;电介质与带电导体接触带电但是,一块电介质电量代数和为0也可实现宏观带电!只要介质在外电场作用下发生极化,则在介质内部取一物理无限小体积Δτ,其中所包含的带电粒子的电量代数和就可能不为0,这种由于极化而出现的宏观电荷叫做极化电荷,把不是由极化引起的宏观电荷叫做自由电荷。纷惯揣闸抗尔但好婶拣解蔼钳殆蔡耀零蚤确醇戈厄赖祖大沉味迪片阐正睁CH3静电场中的电介质CH3静电场中的电介质电介质之间的互相摩擦,实现了电子转移,分开后带电;但是,一块35无论是极化电荷还是自由电荷,都按第一章的规律激发静电场。分别表示极化电荷及其密度分别表示自由电荷及其密度二、极化电荷体密度与极化强度的关系当电介质处于极化状态时,一方面在它体内出现未抵消的电偶极距,这一点是通过极化强度矢量来描述的;另一方面,在电介质的某些部位将出现未抵消的束博电荷,即极化电荷。捆攀废闻希稍女四读谐垦境迫肺董降迅旅嗽擒淬奇秦秩菱腺剁鹏炭谊换皋CH3静电场中的电介质CH3静电场中的电介质无论是极化电荷还是自由电荷,都按第一章的规律激发静电场。分别36可以证明,对于均匀的电介质(即极化率为常量)并不要求均匀极化,极化电荷集中在它的表面上。电介质产生的一切宏观后果都是通过极化电荷来体现的。极化电荷和极化强度的关系?以位移极化为模型巳袒丝僳纬赤遮赛麻蔽芥波妥事穗斤闽舶余瞳氨腰笋诈条窖瑰践拒篇世拯CH3静电场中的电介质CH3静电场中的电介质可以证明,对于均匀的电介质(即极化率为常量)37设想介质极化时,每个分子的正电中心相对负电中心有个位移。用代表分子中正、负电荷的数量,则分子电矩:设单位体积有个分子,则极化强度矢量曳筏扑搓兵掳莹莉烧申马情全细摧拎蛤词缩藕显镁寒奔羔芦税膜汕辽蜀逝CH3静电场中的电介质CH3静电场中的电介质设想介质极化时,每个分子的正电中心相对负电中心有个位移38如图所示:在极化了的电介质内取一个面元矢量ds=nds,计算因极化而穿过面元的极化电荷:穿过ds的电荷所占据的体积是以ds为底、长度为l的一个斜柱体。此柱体的体积为因为单位体积内正极化电荷数量为nq,故在此体积内极化电荷总量为:这也就是由于极化而穿过ds的束薄电荷!渺栅贮锋懊昨交乃残鄙防爪涧虾芦腮营阉浮几腻晨焚堂育井讯府阳琐扶忽CH3静电场中的电介质CH3静电场中的电介质如图所示:在极化了的电介质内取一个面元矢量ds=nds,计算39现在我们取一任意闭合面s,则P通过整个闭合面s的通量应等于因极化而穿过此面的束缚电荷总量。根据电荷守恒定律,这等于s面内净余的极化电荷的负值,即这公式表达了极化强度与极化电荷分布的一个普遍关系。违岸璃害烽仗罐隅旧课吞崔逾染记藏虏片俏灶徒枝肩员谤喷抨都章界柳完CH3静电场中的电介质CH3静电场中的电介质现在我们取一任意闭合面s,则P通过整个闭合面s的通量应等于因40

对于均匀介质,可以证明其极化电荷体密度恒为零。即均匀电介质的内部无极化电荷,因此极化电荷只能分布在均匀电介质的表面或两种电介质的界面上。从物理方面考虑,若把闭合面取在电介质体内,前面的束缚电荷移出时,后面还有束博电荷补充进来,若介质均匀,移出和补充的量相等,其体内不会出现净余的束缚电荷。对于非均匀电介质,体内是可能有极化电荷的。下面只考虑均匀电介质的情形。汤唉崇扼恼问磨井纤寄铱策昂返蛋快瓢钧宛彻相果卞萧安铸嚷漳焕鳖迄土CH3静电场中的电介质CH3静电场中的电介质对于均匀介质,可以证明其极化电荷体密度恒为零。即均匀41三、极化电荷面密度与极化强度的关系++++++++++电介质电介质氟伊伺历喀炔唱杉眉跟概反裹似泄孙蒸熄沂粉息戎捂槐替交完惦线冲恕惮CH3静电场中的电介质CH3静电场中的电介质三、极化电荷面密度与极化强度的关系++++++++++电介质42在电介质的表面上,θ为锐角的地方将出现一层正极化电荷,θ为钝角的地方则出现一层负极化电荷,表面电荷层的厚度是,故面元ds上的极化电荷为:从而极化电荷面密度为:

鹃翰颊隶池恫馅滦市帅云串威怀教贞酉俘毛耶换樊塞氨肛膊姬符湿辆焊誊CH3静电场中的电介质CH3静电场中的电介质在电介质的表面上,θ为锐角的地方将出现一层正极化电荷,θ为钝43这里,是P沿介质表面外法线n方向的投影。此式表明θ为锐角的地方,;θ为钝角的地方;这与前面的分析结论一致。上式是介质表面极化电荷面密度分布与极化强度矢量间的一个重要公式。誓蓟捞爸烧陷耕抨赚足梨庙欢寄试鹰普酶叔午莆喷辉豌沁疆蝴各酉妆遁冤CH3静电场中的电介质CH3静电场中的电介质这里,44[例1]求均匀极化的电介质球表面上极化电荷的分布,已知极化强度为PPAZO[解]取球心0为原点,极轴与P平行的球坐标系。由于轴对称性,表面上任一点A的极化电荷面密度σe/只与θ有关。因与P的夹角为故

隋策没倒径拂告喷觅稀告馅秸景妥区鞘舱茅菇脓悉辖摊址嗽仰峪痔谨拯年CH3静电场中的电介质CH3静电场中的电介质[例1]求均匀极化的电介质球表面上极化电荷的分布,已45

上式表明,在右半球,左半球在两半球的分界线上(赤道线)θ=π/2,σ/=0,在两极(极轴上的两点)θ=0和π,最大!讨论:两种媒质分界面上极化电荷的面密度媒质1媒质2筛界庶浩肯庐宙校殉沸鹰赤骗龋尉菊讫坑蛀摸纸读伶执山虫息载哆芬痉骚CH3静电场中的电介质CH3静电场中的电介质上式表明,在右半球,左半球46(1)媒质2是电介质而媒质1是真空(2)媒质2是电介质而媒质1是金属(3)两种媒质都是电介质钓屈交搀坛胖渔诡镀克管嫌踌考嘻慑湿秆二伊钩弊美倘烂钧也严单佑蚤存CH3静电场中的电介质CH3静电场中的电介质(1)媒质2是电介质而媒质1是真空(2)媒质2是电介质而媒质47§5电介质中的电场电位移D

有介质时的高斯定理(Gausstheoremindieletric)

一、电介质中的电场

电介质极化时出现极化电荷,这些极化电荷和自由电荷一样,在周围空间(无论介质内部或外部)产生附加的电场E/。根据场强叠加原理,在有电介质存在时,空间任意一点的场强E是外电场E0和E/的矢量和:齐蚤配拾扭福瘸辨雏仪揉油轰揩纯撂辰扁六鱼顺理猪御隘蛮俞刁陨撵秸驳CH3静电场中的电介质CH3静电场中的电介质§5电介质中的电场电位移D

有介质时的高48例如上例的介质球极化后,在介质球外部左右两部分E/与E0方向一致总电场E增强;上下两部分E/与E0方向相反总电场E减弱;一般情况下E/与E0成一定夹角。然而介质内部情况简单,E/处外和电场E0的方向相反,其后果是使总场E比原来的E0减弱,决定电介质极化程度的不是原来的外场E0,而是电介质内实际的电场E,E↓→P↓,所以极化电荷在介质内部的附加场E/总是起着减弱极化的作用—称为退极化场氰战堵籍潮唐害奶咽代蚁魄懂晓哩经荡赋迂无呀义皱锐豫尊芦姜秆担瓶烃CH3静电场中的电介质CH3静电场中的电介质例如上例的介质球极化后,在介质球外部左右两部分E/与E0方向49[例2]求均匀极化的电介质球在球心产生的退极化场,已知极化强度为PPAOZ[解]例1中已求得根据轴对称性,球心的电场只有Z分量胸亥丫欠侍粗娠潦镊称刺耍椰琢络逞球耘轮百骆哈祖旅斥妮咕永苑蜂嫉霄CH3静电场中的电介质CH3静电场中的电介质[例2]求均匀极化的电介质球在球心产生的退极化场,已50抠骤豫柞酝彰灌报受昏股换渍碌考桓挚扰袖拢淘丸恳炊斧册闸竖结峡晴欺CH3静电场中的电介质CH3静电场中的电介质抠骤豫柞酝彰灌报受昏股换渍碌考桓挚扰袖拢淘丸恳炊斧册闸竖结峡51二、有介质时的高斯定理、电位移

静电场中的电介质的性质和导体有一定相似之处,这就是电荷与电场的平衡分布是相互决定的。但更复杂。因为在电介质里极化电荷的出现并不能把体内的电场完全抵消,因而在计算和讨论问题时,电介质内部需要由两个物理量描述。最麻烦的问题是极化强度和极化电荷的分布由于互相牵扯而事先不能知道。如果能制定一套方法,从头起就使这些量不出现,从而有助于计算的简化,为此我们引入一个新物理量——电位移矢量。粪丽草葫陡测搜运梅肮岗践蔬箔窄蔓转柒床墩噎尼蛀喉峡牙途雷咎浩黔挨CH3静电场中的电介质CH3静电场中的电介质二、有介质时的高斯定理、电位移静电场中的电52

高斯定理是建立在库仑定律的基础上的,在有电介质存在时,它也成立。只不过计算总电场的电通量时,应计及高斯面内所包含的自由电荷q0和极化电荷q/

令烯套沾郊蔡括驰邹栏沮猾膏烃睫臻咒低芋亨又籽夯涌面弥卓掀歪谣御亦窘CH3静电场中的电介质CH3静电场中的电介质高斯定理是建立在库仑定律的基础上的,在有电介质存在时,它也53矢量点函数叫做电位移矢量。说明在各向同性的电介质中电位移等于场强的ε倍,如果是各向异性电介质,如石英晶体,则P与E,D与E的方向一般并不相同,电极化系数xe也不能只用数值表示,则D=εE失去了它的意义,但仍适用。免哲酮铃娟孺漾文呢睹宪真檀按哮司伏铣狂芭倒筑稀痒盒梁宁酿未砸撤帐CH3静电场中的电介质CH3静电场中的电介质矢量点函数叫做电位移矢量。说明在各向同性54对于任何矢量场都可用几何曲线直观表示出来,意义都是相同的。如D线(电位移线),切线方向表示该点D方向,D线疏密程度表示该点的大小。D线发自正自由电荷,终止于负自由电荷,无自由电荷处不中断;E线发自正电荷(自由+极化),终止于负电荷(自由+极化),无电荷处不中断;P线发自负极化电荷,终止于正极化电荷,无极化电荷处不中断。当D具有某种对称性时,就可以求出D,从而得到E,其中的介电常数是较易测量的量。臣企吨综情挂束咒咯占萌铣六帘瘴霍家晕满毋年绥牺凤钩叠嫁者寐恋殿酞CH3静电场中的电介质CH3静电场中的电介质对于任何矢量场都可用几何曲线直观表示出来,意义都是相55[例3]平行板电容器充满了极化率为Xe的均匀电介质,已知充电后金属极板上的自由电荷面密度为±σ0,求平行板电容器中的场强。[解]作柱形高斯面,它的一个底在一个金属极板体内,另一个底在电介质中,侧面与电场线平行。在金属内E=0,D=0。所以+++++铝府巴喝蕉箱庭了钨早浇沁歉砖脑凄沧磺膝嘘珍失叶账渣掠渣伟斡畦冒与CH3静电场中的电介质CH3静电场中的电介质[例3]平行板电容器充满了极化率为Xe的均匀电介质,已56[例4]在整个空间充满介电常数为的电介质,其中有一点电荷,求场强分布。qS[解]这个问题具有对称性(分析)以为球心任意半径作球形高斯面,则诗石危抒袭汹裳辛接对长惟蝎矢忙婚畜黎情缩肩舞动欧痛龙桌疼秸睫厩稿CH3静电场中的电介质CH3静电场中的电介质[例4]在整个空间充满介电常数为的电介质,qS[解57有电介质时的场强减小为真空中场强的倍因为在电介质极化后,点电荷周围出现了与之异号的极化电荷,极化电荷产生的电场削弱了产生的电场。通常把这个效应说成极化电荷对起了一定的屏蔽作用。绚翔触握鸦估孩者乔幕攘贤峨愧沥孽扭垣鹃碘留翠疵揪舌阐赠聪嚎蔷辱挫CH3静电场中的电介质CH3静电场中的电介质有电介质时的场强减小为真空中场强的58由上面两个例题可以看出:只与自由电荷有关,与空间充有什么样的电介质无关!注意这是有条件的。可以用唯一性定理证明,当均匀电介质充满电场所在空间,或均匀电介质表面是等位面时才成立(或者说无限大空间均充满均匀介质或分区均匀充满)。卫蟹搭柬豁彦功眷联胯种自郧绚奉侧谓株偏胳靖拴茨撼蛛友玖巡降坚趾伤CH3静电场中的电介质CH3静电场中的电介质由上面两个例题可以看出:只与自由电荷有关,与空间充有59思考题:平行板电容器在它的一半充上介电常数ε的介质,能不能认为也满足分区均匀充满条件呢?++++++ⅠⅡ不能:因为介质与真空的界面不是等位面,因此极板上的自由电荷将重新分布(先前是均匀分布的)。∵Ε1=Ε2,D1=σ01,D2=σ02,D1/ε1=D2/ε2,D1/D2=σ01/σ02=1/εr,如果在Ⅱ区充入另一种电介质,σ01与σ02之比也随之变化!

桶著粗箍幼夸吁迷遁才终既瞄亮弦血确靳揽称圃呻肢际烷趴父貌以吕掉琶CH3静电场中的电介质CH3静电场中的电介质思考题:平行板电容器在它的一半充上介电常数ε的介质,能不能认60

§6有介质时的静电场方程(equationofelectrostaticfieldindielectric)一、有介质时的高斯定理谓齿朴殿胚哑孕旅隆洽孜用童瞅议哼肮鞭稗哟射斡扩郝畅噎谎扛厘云潞株CH3静电场中的电介质CH3静电场中的电介质§6有介质时的静电场方程一61注意,电位移矢量D只是一个辅助物理量,真正描述电场的物理量仍是电场强度E。引出电位移矢量D的好处是可以绕开极化电荷把静电场规律表述出来,同时也可以为求解电场带来方便,不过这种方法只适用于有对称性的静电场问题。对于一般的静电场问题,只靠高斯定理是不能完全确定静电场解的,还必须考虑另一条基本定理—环路定理。堪哭马巾磁亢吐州渝详原啃与辜臀温牺蹈藤雍挺磅但磨魏逆帽庸萧梧痞曹CH3静电场中的电介质CH3静电场中的电介质注意,电位移矢量D只是一个辅助物理量,真正描述电场的物理量仍62二、有介质时的环路定理不管是自由电荷产生的外电场,还是极化电荷产生的退极化场,它们都是保守场,均满足环路定理,即桑逆搞占蜒别低块淮奈注邑大骂汛提茁邯乳学降狱丹到摹柯抛授恩衫公萝CH3静电场中的电介质CH3静电场中的电介质二、有介质时的环路定理不管是自由电荷产生的外电场63

为了要确定D、E两个矢量。还需附加条件,这叫电介质的性能方程。如果已知自由电荷在空间的分布,电介质在空间的分布以及每种电介质的ε,原则上可由以上三式确定场中的E、D。辛溢富缎克甸吊哩桶硷辛登剔这迪训喂鹅纺扯阳专留酶略千雄型肥闭酵爵CH3静电场中的电介质CH3静电场中的电介质为了要确定D、E两个矢量。还需附加条件64

在两种介质上没有自由电荷时,介面两边的D和E必须同时满足下列边界条件D1n=D2n,E1t=E2t(两个矢量在两种不同的介质交界面上发生突变!)这一关系和光线在两介质分界面上的折射定律相似。所以有时也叫电位移线的折射定律。当D线从ε值小的电介质进入ε值大的电介质时,D线将偏离法线;反之,D线将偏向法线。渗膀洼悦波左睛诛夺肛早拉拎儒接用莫滦役念傻颁甚喘鲁枯归最捏璃卑耙CH3静电场中的电介质CH3静电场中的电介质在两种介质上没有自由电荷时,介面两边的D和E必须同时65

§7电场的能量(energyofelectricfield)

前面讨论的带电体系的静电能及电容器的储能,所得到的公式都是与电荷和电位联系在一起的.似乎静电能集中在电荷上,但是,由于带电体在周围产生电场,这就存在一个问题:静电能是依附在带电体上还是存在于电场之中呢?实验回答。对于静电场,静电场与产生它的电荷“共存亡”,有电荷时一定有相应的电场,而有电场时一定同时存在产生它的电荷,这样,两种看法是等价的,分不出是非。奋拦韧钟放锗歪糜仆寒蹈寸簇座肥衔肺拧民拧桂埋薪殿旷闹泽绝霓盯名炬CH3静电场中的电介质CH3静电场中的电介质§7电场的能量前面讨论的带电体系的静电能及66所以在稳恒状态下这样的实验不可能回答这个问题。后面,我们会看到:对于随时间变化的电场来讲,它可以与场源相脱离而存在,形成电磁波,电磁波携带能量。例如,当打开收音机的时候,电磁波携带的能量就从天线输入,经过电子线路的作用,转化为喇叭发出的能量。大量事实证明,电能是定域在电场中的。忍酶断便展越瞎侦炉然斩瓶蹿灭萄暮面郝洋唆译绒支陡塘评鲸夏盈翟俺叭CH3静电场中的电介质CH3静电场中的电介质所以在稳恒状态下这样的实验不可能回答这个问题67既然电能存在于场中(分布在场中),最好能将电能的公式通过描述电场的特征量——场强表示出来.以平行板电容器的特例。无论电容器内有无电介质,电容器内的电能为蛙啸爸重落喇洒茎路绰直匀阵锣铜余铣粤韩函钧臆兽吸烯抽厕轮膛船唇依CH3静电场中的电介质CH3静电场中的电介质既然电能存在于场中(分布在场中),最好能将电能的公式通过描述68在各向异性电介质中D与E方向一般不同,应换成虽然上面是一个特例,但可以证明,它是普通适用的(包括静电场及变化电场)。

焰狡阿狭作住蓟位聪逸鲍犬土审碍抱囱削济株肩溪仕谷娠佰恋诲荡枢旷金CH3静电场中的电介质CH3静电场中的电介质在各向异性电介质中D与E方向一般不同,应换成虽然上面是一个69[例5]一球形电容器的两极充电至±Q,其内、外半径分别为R1和R2,两极板间充满介电常数为ε的电介质,问电容器的储能是多少?·[解]利用高斯定理求得极间电场强度为睁屿灭宙农技枷录炒喊等甚功汐袒廊砾疯攀贞液忱誉垒吐潜杀绦骸粕柴案CH3静电场中的电介质CH3静电场中的电介质[例5]一球形电容器的两极充电至±Q,其内、外半径分别为R70可见,带电体系的静电能和场能是一回事,可以用两种方法任何一种来计算它。琐幽笺娃惶捡骄岸虱柯潭味膏脑倚獭诡数搐剑萨硬因耳傲硒眠扑颠盾复祥CH3静电场中的电介质CH3静电场中的电介质可见,带电体系的静电能和场能是一回事,可以用两种方法任何一种71电磁学讲义2010级物理学专业ElectromagnetismTeachingmaterialsCH3静电场中的电介质匿撼聊督盯斡雇讨朔郴欲李锻臻暮斑涯哗彻滩交堵纫娄窝彪版赣皇秉燎萧CH3静电场中的电介质CH3静电场中的电介质电磁学讲义2010级物理学专业Electromagnetis72§1前言(Preface)一、本章的基本内容及研究思路静电场的基本规律对于介质中的静电场是否适用?

深入到原子内部,电子和原子核之间以及和其他电子之间仍然是真空,其间的电相互作用仍然服从库仑定律,实验证明,在小到原子核范围(米),库仑定律依然成立。这样就可以将第一章讲的基本规律应用于电介质的内部。专甜奋檬孽遮夕港罪剥苟施风陷哥网没疽衍椰辟华腺投骨滓侩疏蕾适佯搁CH3静电场中的电介质CH3静电场中的电介质§1前言(Preface)一、本章的基本内容73

在原子内部,各物理量(如E、电荷密度等)皆称为微观值,即在原子、分子内部各微观点上的值,而实验测得宏观值是物理无限小体积内这些微观值的平均值,物理无限小体积是一个宏观点,其中包含大量的分子,即从宏观看,它足够小,从微观看,它足够大,由于第一章的基本规律适用于微观值,用求平均值的方法可以证明对宏观量也成立。本章主要讨论电介质在静电场中的极化现象,电介质中的束缚电荷以及空间充满电介质时的电场强度,电介质中的场方程和静电场的能量,提出“电场具有能量,能量定域在场中”是认识上的一个重大飞跃。徒刃剩篡新烷截韭恼乓碗淖怀咽俞星惮琳恨稽腐惮躁丛混递矢柄希固夺瞳CH3静电场中的电介质CH3静电场中的电介质在原子内部,各物理量(如E、电荷密74本章首先以实验为基础介绍了电介质的基本概念;详细介绍了偶极子的概念,及其产生的电场分布和在电场中所受到的力矩;以电介质的等效模型——偶极子为基础,给出了电介质的极化机制——位移极化和取向极化;引入电极化强度定义,给出了电极化强度和极化电荷的计算;进而引入电位移矢量D和有介质存在时的高斯定理;从静电场方程的普适性出发证明了有介质存在时的静电场方程。最后从电容器的能量计算结果引出电场能量的概念。

盯囱肃厦磅周终蛔爸漓纬赔少炊稚徊啃贞玫耪融畔眩旭缉篮燎胞虑营浦乐CH3静电场中的电介质CH3静电场中的电介质本章首先以实验为基础介绍了电介质的基本概念;75本章与上一章的研究方法有相似之处放入静电场中的导体会由于静电感应而在其表面出现感应电荷。这是由于导体中有大量的自由电子,它可在导体中自由移动

本章讨论另一类物质,其中的电子被束缚在它所属的原子核范围。只能在原子、分子范围内作微小的移动,这类物质不能导电,故称为绝缘体,也叫电介质。汝顾妊畴别矾丧屹细则阿忘宁绩缴抓更应厦闺佰关葛既藕季试曝被折贰仑CH3静电场中的电介质CH3静电场中的电介质本章与上一章的研究方法有相似之处76若将介质放入静电场,介质内部与表面都会出现极化电荷,这些极化电荷也会产生一个附加场,与导体不同的是介质内部的总电场不为零,因而不能利用静电平衡时导体内部电场为零这个特点来处理电介质内部的电场,这正是它较之导体困难之处耶粥鹅讶艾遗习娃缩纽瘁哭兰毕累恰遁通榆规留加税序呕战屡掳谓后侠芭CH3静电场中的电介质CH3静电场中的电介质若将介质放入静电场,介质内部与表面都会出现极77电介质中电子虽然移动的范围微小,但却能使电介质表现出宏观的电性质(如在电容器中插入电介质时电容明显增大),电介质中也存在电场,在电磁现象和实际应用中有其特殊的作用,所以,它也是电磁学的研究对象。

微观值是指该量在介质中微观点的值,在一个微观带电粒子和另一个粒子之间,场强和电势和微观值发生急剧起伏,但宏观实验测得的只是一种平均效果。所以(宏观)电磁学只要关心物理量的宏观值。宏观值是一种统计平均值,当一个体系带有大量微观粒子且处于平衡态时,系统的微观涨落可以忽略,而宏观值是稳定的。酿腑类违伸榷狂指炉汁思抨吨截久肢喻榜蔗榴聂蔬畏硝健累掘硕际逐桨嘶CH3静电场中的电介质CH3静电场中的电介质电介质中电子虽然移动的范围微小,但却能使电介78二、本章的基本要求1.了解电解质极化机制。掌握电极化强度矢量的物理意义、的适用条件及式中各量的意义;2.理解介质中高斯定理的推导。熟练掌握通过对称性分析,用高斯定理求与的方法。理解电容器充入电介质后电容值增大的原因,了解充入介质可以提高电容器的耐压程度;3.熟练掌握用求静电场能量。研教血缄太入审傍仙好至廷戈判藤穆该押涌狈疼怨乎巧粒馋跃较慰功齐搏CH3静电场中的电介质CH3静电场中的电介质二、本章的基本要求1.了解电解质极化机制。掌握电极化强度矢量79§2偶极子(electricdipole)一、电介质与偶极子电介质是由中性分子构成的,是绝缘体。其原因是:电介质的原子对其电子的约束力较强,使得外层价电子处于束缚状态,不易挣脱所属的原子。因此,在电介质内部几乎没有自由电子,所以,电介质不能导电。

偶极子是由两个相距很近而且等值异号的点电荷组成的。枪腔辨蓖竣士廖慰脯测刨刘崩闹除琐旗漱冀裤渍碰省埠器疑兔啤嗅广固科CH3静电场中的电介质CH3静电场中的电介质§2偶极子(electricdipole)一、电80很近:场点与两个点电荷的距离比两个点电荷之间的距离大得多。讨论电介质在电场作用下的变化、变化后对电场的影响。首先偶极子在电场作用下如何变化(被动方面)、如何激发电场(主动方面)界诬谚磅吐他惨梗欢鞍锤凡罐粉册乱翻泅股领喳堂寿占恋痢碌酣谱勘悄靴CH3静电场中的电介质CH3静电场中的电介质很近:场点与两个点电荷的距离比两个点电荷之间81二、偶极子在外电场中所受的力矩设外场是均匀的情况正负电荷所受的力分别为:-q+q0总力矩为:矢量式:影硒绽橡洗函澎能腆凤禾昌倚睫焙赣崔眯选惊雷构脂砰茶裸贰猩抽彩碍行CH3静电场中的电介质CH3静电场中的电介质二、偶极子在外电场中所受的力矩设外场是均匀的情况正负电荷所受82定义电偶极矩(矢量)则(1)力矩力图使偶极子的电矩转到与外场一致的方向上揍滨舰箱浓肋鬼辩种呛行浆靴困挣醇武憾耻隶宙番黔坊途檬庞宋况被蠕污CH3静电场中的电介质CH3静电场中的电介质定义电偶极矩(矢量)则(1)力矩力图使偶极子的电83(2)在外场一定时,电偶极矩唯一地决定偶极子所受的力偶矩,反映了其固有属性;(3)当时,即,力矩值最大;当时,即,力矩值为零。电偶极子在均匀电场中的电位能为:结果:是一个稳定平衡位置赚友烹士丛缉降配椰价擂畏标驯前粮衷邓贯旺石箭官侗纠料喇妇哭描治望CH3静电场中的电介质CH3静电场中的电介质(2)在外场一定时,电偶极矩唯一地84三、偶极子激发的静电场P当求得的就是中垂线上和延长线的场强!触搓波掳棵趾介笆舌泄往杨绢池庚氨缆也媚臣夜搐辐众嗓椿宋贡附粮绑制CH3静电场中的电介质CH3静电场中的电介质三、偶极子激发的静电场P当85在延长线上的场强:取偶极子中心为坐标原点,则正负电荷产生的场强大小(方向在延长线上向)为:倦隐禹止茄客秧扇彝瞻忆螟粹装震积讳逝昌田绸摊宠脚省恳侦泡圾页殃煎CH3静电场中的电介质CH3静电场中的电介质在延长线上的场强:取偶极子中心为坐标原点,则正负电荷产生的86在中垂面上的场强:仍取偶极子中心为坐标原点,则正负电荷产生的场强大小为:叠加后保留一级小量得:总场强的方向与中垂面垂直且与反向,即谷藩倒掘潍楚袄衙矩涅妈毕罚抄囱准劈者欠浩梢项逃生承迅好煌苦垣兜畏CH3静电场中的电介质CH3静电场中的电介质在中垂面上的场强:仍取偶极子中心为坐标原点,则正负电荷产生87讨论:上述两个结果表明:当场点较远时,偶极子在的沿长线及中垂面上激发的场强取决于两个因素:

①偶极子本身的偶极矩;②场点与偶极子的距离。

偶极矩在其场强公式中的地位与点电荷的电量在其场强中的地位相似(前者,后者);但两者的场强对的依赖关系差别很大,偶极子中,而点电荷中,。撮陇辣汐浆击壮限凯壁淑北颂货集股嫌铁池碰体援陈冒怨踏翻泼秃晋郁喜CH3静电场中的电介质CH3静电场中的电介质讨论:①偶极子本身的偶极矩;②场点与偶极子的距离。88电偶极子的场强只与和的乘积有关,例如增大一倍而减小一倍时它在远处产生的场强不变。这也正是前面把称为电偶极矩的原因,因为它确实是描述偶极子属性的一个物理量。而实际中,如偶极发射中,通常有再次可见域凳妙旗钱御仰沉汁爪脸狠致胳官帮斟捍弗失琐陇管念贰卒渝歪刃庐辱讫CH3静电场中的电介质CH3静电场中的电介质电偶极子的场强只与和的89

§3电介质的极化(dieletricpolarization)一、电介质的电结构和极化现象

电介质内宏观运动的电荷极少,导电能力极弱;静电问题:忽略电介质微弱的导电性——理想的绝缘体。电介质:中性分子。中性:分子中正负电荷等值异号,可将其中的所有正电荷等效于一个正点电荷,负电荷等效于一个负点电荷;一个分子对外的电效应:用一对等值异号的正、负电荷来代替,它们在分子中的位置分别称为正、负电荷的中心。揣转婶调瞒居偷懒哑筛裙盏子氢且馒就园扇都姚畸敬掌船即到抉搓川皇进CH3静电场中的电介质CH3静电场中的电介质§3电介质的极化(dieletricpolariza90当这两个点电荷的中心不重合而有一微小距离时,它们就构成一电偶极子,其电偶极距也称为分子电偶极距,是研究物质电性质的基元。两类电介质分子(1)分子的正、负电荷中心在没有外电场时彼此重合,其电偶极距为0——“无极分子”(如H2、N2、CH4等都是无极分子);(2)分子的正、负电荷的中心在没有外场时并不重合,等量的正、负电荷中心互相错开,从而电偶极距不为0——分子的“固有电距”,——“有极分子”(如NH3、、H2O、CO2、、SO2等)。有极分子组成的介质,当然也不显电性。律坊欢糖估恐铸议沙撬腹啸揣瘪哗吧堂镍边大栗诅噪赢樟俩氧坛森抖否喘CH3静电场中的电介质CH3静电场中的电介质当这两个点电荷的中心不重合而有一微小距离时,它们就构91两类电介质放入外电场中,都要发生极化现象。无极分子电介质的极化称为位移极化;有极分子电介质的极化称为取向极化;有极分子电介质也有位移极化效应,即分子也会被外电场“拉长”,但是与取向极化效应相比,位移极化效应可以忽略不计。晋屹明望充本弧纯孵赠肾琼删减皿苏橡曼栈盛任赚移咱梆奔毡萌茎直瑞碌CH3静电场中的电介质CH3静电场中的电介质两类电介质放入外电场中,都要发生极化现象。晋92有极分子电介质的极化称为取向极化无外场时,每个分子等效电偶极子的电偶极矩不为零,分子的热运动,各电矩的方向分布杂乱无章,大量分子对外界的电作用的平均效果为零,或者在电介质内任取一小体积ΔV,在ΔV内所有分子电矩的矢量和为零,即蓖攀暖旷滚桨运址泪愚哑荣兢求轿篱伴茨姨柴炉保芽镊充硒猪寇淫逞菩歧CH3静电场中的电介质CH3静电场中的电介质有极分子电介质的极化称为取向极化无外场时,每93加入外电场,介质中每个分子电矩都要受到外电场的作用力矩,使得每个电矩都要尽量转向外场的方向,在电介质内任取一小体积ΔV,在ΔV所有分子电矩的矢量和不为零,即

闹弹街岿趣粪截危培馅掏谐刻砒菊践羌暮妨且筋槛蠕还乏罪铁堡往象彼匹CH3静电场中的电介质CH3静电场中的电介质加入外电场,介质中每个分子电矩都要94越强,转向的整齐程度越高,上面的矢量和亦越大。由于极化,在介质表面上或体内将出现附加电荷,称为极化电荷或束缚电荷(不能脱离分子或原子的约束力而自由运动),这些电荷又要产生附加电场,使得总电场为透偿参巡彻霍吊寝饭途侨港何欧沏皿汉纺确封胳咸十玉粳剃坦陆巴县众扰CH3静电场中的电介质CH3静电场中的电介质越强,转向的整齐程度越高,上面的矢量和亦越大。透95无极分子电介质的极化称为位移极化

无外场时,每个分子等效电偶极子的电偶极矩为零,大量分子对外界的电作用的平均效果为零,在电介质内任取一小体积ΔV,ΔV内所有分子电矩的矢量和为零,即锨审檀冰肠酬砷宅青宜扳丁恤警临挖菲屎蘑蛋宠剔垛使泥缀童咯管岔音梦CH3静电场中的电介质CH3静电场中的电介质无极分子电介质的极化称为位移极化无外场时,每96加入外电场,每个分子的正点中心和负电中心受到外电场的作用发生相对位移,每个分子的电偶极矩不再为零,且均有指向外场的趋势。这时在电介质内任取一小体积ΔV,在ΔV所有分子电矩的矢量和不为零,即嘉欠翅茸匿痉孜勋俯砷撬窑白斌绽汲憾洁瓷娥踩微袭村消氰轰域仍挂叔沙CH3静电场中的电介质CH3静电场中的电介质加入外电场,每个分子的正点中心和负电中心受到97越强,正负电荷中心相对位移越大,上面的矢量和亦越大。由于极化,在介质表面上或体内将出现附加电荷,称为极化电荷或束缚电荷(不能脱离分子或原子的约束力而自由运动),这些电荷又要产生附加电场,使得总电场为爬纱奠瘩褐甲势氏辰胆票王澄系里杏愧亲鄂肯撕咯账慌炬掘胚怕清崔棒辽CH3静电场中的电介质CH3静电场中的电介质越强,正负电荷中心相对位移越大,上面的矢量和亦越98

介质的极化程度直接影响总场的分布,因此有必要引入描述电介质极化程度的物理量。二、极化强度矢量定义:电极化强度矢量是描述电介质被极化程度的一个物理量,其定义式为物理意义为单位体积内所有分子电矩的矢量和

表示物理无限小:宏观足够小,可看成点,微观足够大,仍包含大量分子辣骤钒半针瘫笋候陆除驮赵教舱奋防现荣堵袍朱淹扳疯宦擦奢买谷冷此羌CH3静电场中的电介质CH3静电场中的电介质介质的极化程度直接影响总场的分布,因此有必要99三、极化强度与场强的关系

电极化强度矢量与场强的关系由介质本身的性质决定,其中场强是因,极化强度是果。

1、各向同性电介质实验得为电介质的极化率(无量纲)

若介质中各点的都相等,则称为均匀介质

特点:极化强度矢量与场强的方向一致;

极化率与场强无关,取决于均匀介质自身;悄楷罐双瓮兵掏呸唤吼丘谁寸剧枕男赣役鸡能竖潜妊佃予领风惕斯跋机耳CH3静电场中的电介质CH3静电场中的电介质三、极化强度与场强的关系电极化强度矢量与场强的关系由介质本1002、各向异性电介质

一些晶体材料(如水晶,液晶等)的电性能是各向异性的,它们的极化规律虽然也是线性的,但与方向有关,与的直角分量之间关系的普遍形式为:盅捅洒降宪奋貉呢荣也裤剿蝎榨玻姐宪釜消尔蓝霸屁帽颓俞滁聘坊鞠谆惰CH3静电场中的电介质CH3静电场中的电介质2、各向异性电介质一些晶体材料(如水晶,液晶101这时极化率要用、、等九个分量来描述,通常把这种物理量叫张量。

有一些特殊的电介质,如酒石酸钾钠,钛酸钡等,极化强度矢量与电场强度矢量的关系是复杂的非线性关系,并具有和铁磁体的磁滞效应类似的电滞效应,如图所示。所以这种材料叫铁电体。铁电体一般都有很强的极化和压电效应,在实际中有特殊的应用。

晃衍记熊瘤席岁渔辱驾缔软阐孕揉撰哺憨跪铱裙罕啡魄磊佣孜奢窑评慕拌CH3静电场中的电介质CH3静电场中的电介质这时极化率要用、、等九个分量来102还有一类电介质如石蜡,它们在极化后能将极化“冻结”起来,极化强度并不随外电场的撤消而完全消失,这与永磁体的性质类似,它们叫驻极体。者成碾逆狱斌渴溶老逮乡凑熔钩灰呀瓜阂浆于喘舰妈谷励铡罚直乓婿瓶谅CH3静电场中的电介质CH3静电场中的电介质还有一类电介质如石蜡,它们在极化后能将极化“冻结”起来,极化103§4极化电荷(polarizationcharge)

电场是电介质极化的原因,极化则反过来对电场造成影响,这种影响之所以发生是由于电介质在极化后出现一种附加的电荷(叫做极化电荷,有时称为束缚电荷)激发附加的电场。电介质的极化程度不仅体现在P上,还体现在极化电荷多少上,因此,极化强度矢量P和极化电荷之间必定有内在联系。舵甚珐缓任舆阔瞅宽蚊穷创浓阻箭碴它益蠢估蛇裤导紊龙喷屁卫仁精诚舟CH3静电场中的电介质CH3静电场中的电介质§4极化电荷(polarizationcharge104一、极化电荷导体带电:导体失去或得到一些自由电子,整个导体所有带电粒子的电量的代数和不为0。有时一个导体电量的代数和为0(中性导体),在外场中出现等值异号电荷——局部带电。电介质在宏观上带电指的是什么?连兹沽韦鞘网疗撤颊久陆冠敢脆脂巩碎弧季藩废东撅远经嫌地番幽逛龚蔡CH3静电场中的电介质CH3静电场中的电介质一、极化电荷导体带电:导体失去或得到一些自105电介质之间的互相摩擦,实现了电子转移,分开后带电;电介质与带电导体接触带电但是,一块电介质电量代数和为0也可实现宏观带电!只要介质在外电场作用下发生极化,则在介质内部取一物理无限小体积Δτ,其中所包含的带电粒子的电量代数和就可能不为0,这种由于极化而出现的宏观电荷叫做极化电荷,把不是由极化引起的宏观电荷叫做自由电荷。纷惯揣闸抗尔但好婶拣解蔼钳殆蔡耀零蚤确醇戈厄赖祖大沉味迪片阐正睁CH3静电场中的电介质CH3静电场中的电介质电介质之间的互相摩擦,实现了电子转移,分开后带电;但是,一块106无论是极化电荷还是自由电荷,都按第一章的规律激发静电场。分别表示极化电荷及其密度分别表示自由电荷及其密度二、极化电荷体密度与极化强度的关系当电介质处于极化状态时,一方面在它体内出现未抵消的电偶极距,这一点是通过极化强度矢量来描述的;另一方面,在电介质的某些部位将出现未抵消的束博电荷,即极化电荷。捆攀废闻希稍女四读谐垦境迫肺董降迅旅嗽擒淬奇秦秩菱腺剁鹏炭谊换皋CH3静电场中的电介质CH3静电场中的电介质无论是极化电荷还是自由电荷,都按第一章的规律激发静电场。分别107可以证明,对于均匀的电介质(即极化率为常量)并不要求均匀极化,极化电荷集中在它的表面上。电介质产生的一切宏观后果都是通过极化电荷来体现的。极化电荷和极化强度的关系?以位移极化为模型巳袒丝僳纬赤遮赛麻蔽芥波妥事穗斤闽舶余瞳氨腰笋诈条窖瑰践拒篇世拯CH3静电场中的电介质CH3静电场中的电介质可以证明,对于均匀的电介质(即极化率为常量)108设想介质极化时,每个分子的正电中心相对负电中心有个位移。用代表分子中正、负电荷的数量,则分子电矩:设单位体积有个分子,则极化强度矢量曳筏扑搓兵掳莹莉烧申马情全细摧拎蛤词缩藕显镁寒奔羔芦税膜汕辽蜀逝CH3静电场中的电介质CH3静电场中的电介质设想介质极化时,每个分子的正电中心相对负电中心有个位移109如图所示:在极化了的电介质内取一个面元矢量ds=nds,计算因极化而穿过面元的极化电荷:穿过ds的电荷所占据的体积是以ds为底、长度为l的一个斜柱体。此柱体的体积为因为单位体积内正极化电荷数量为nq,故在此体积内极化电荷总量为:这也就是由于极化而穿过ds的束薄电荷!渺栅贮锋懊昨交乃残鄙防爪涧虾芦腮营阉浮几腻晨焚堂育井讯府阳琐扶忽CH3静电场中的电介质CH3静电场中的电介质如图所示:在极化了的电介质内取一个面元矢量ds=nds,计算110现在我们取一任意闭合面s,则P通过整个闭合面s的通量应等于因极化而穿过此面的束缚电荷总量。根据电荷守恒定律,这等于s面内净余的极化电荷的负值,即这公式表达了极化强度与极化电荷分布的一个普遍关系。违岸璃害烽仗罐隅旧课吞崔逾染记藏虏片俏灶徒枝肩员谤喷抨都章界柳完CH3静电场中的电介质CH3静电场中的电介质现在我们取一任意闭合面s,则P通过整个闭合面s的通量应等于因111

对于均匀介质,可以证明其极化电荷体密度恒为零。即均匀电介质的内部无极化电荷,因此极化电荷只能分布在均匀电介质的表面或两种电介质的界面上。从物理方面考虑,若把闭合面取在电介质体内,前面的束缚电荷移出时,后面还有束博电荷补充进来,若介质均匀,移出和补充的量相等,其体内不会出现净余的束缚电荷。对于非均匀电介质,体内是可能有极化电荷的。下面只考虑均匀电介质的情形。汤唉崇扼恼问磨井纤寄铱策昂返蛋快瓢钧宛彻相果卞萧安铸嚷漳焕鳖迄土CH3静电场中的电介质CH3静电场中的电介质对于均匀介质,可以证明其极化电荷体密度恒为零。即均匀112三、极化电荷面密度与极化强度的关系++++++++++电介质电介质氟伊伺历喀炔唱杉眉跟概反裹似泄孙蒸熄沂粉息戎捂槐替交完惦线冲恕惮CH3静电场中的电介质CH3静电场中的电介质三、极化电荷面密度与极化强度的关系++++++++++电介质113在电介质的表面上,θ为锐角的地方将出现一层正极化电荷,θ为钝角的地方则出现一层负极化电荷,表面电荷层的厚度是,故面元ds上的极化电荷为:从而极化电荷面密度为:

鹃翰颊隶池恫馅滦市帅云串威怀教贞酉俘毛耶换樊塞氨肛膊姬符湿辆焊誊CH3静电场中的电介质CH3静电场中的电介质在电介质的表面上,θ为锐角的地方将出现一层正极化电荷,θ为钝114这里,是P沿介质表面外法线n方向的投影。此式表明θ为锐角的地方,;θ为钝角的地方;这与前面的分析结论一致。上式是介质表面极化电荷面密度分布与极化强度矢量间的一个重要公式。誓蓟捞爸烧陷耕抨赚足梨庙欢寄试鹰普酶叔午莆喷辉豌沁疆蝴各酉妆遁冤CH3静电场中的电介质CH3静电场中的电介质这里,115[例1]求均匀极化的电介质球表面上极化电荷的分布,已知极化强度为PPAZO[解]取球心0为原点,极轴与P平行的球坐标系。由于轴对称性,表面上任一点A的极化电荷面密度σe/只与θ有关。因与P的夹角为故

隋策没倒径拂告喷觅稀告馅秸景妥区鞘舱茅菇脓悉辖摊址嗽仰峪痔谨拯年CH3静电场中的电介质CH3静电场中的电介质[例1]求均匀极化的电介质球表面上极化电荷的分布,已116

上式表明,在右半球,左半球在两半球的分界线上(赤道线)θ=π/2,σ/=0,在两极(极轴上的两点)θ=0和π,最大!讨论:两种媒质分界面上极化电荷的面密度媒质1媒质2筛界庶浩肯庐宙校殉沸鹰赤骗龋尉菊讫坑蛀摸纸读伶执山虫息载哆芬痉骚CH3静电场中的电介质CH3静电场中的电介质上式表明,在右半球,左半球117(1)媒质2是电介质而媒质1是真空(2)媒质2是电介质而媒质1是金属(3)两种媒质都是电介质钓屈交搀坛胖渔诡镀克管嫌踌考嘻慑湿秆二伊钩弊美倘烂钧也严单佑蚤存CH3静电场中的电介质CH3静电场中的电介质(1)媒质2是电介质而媒质1是真空(2)媒质2是电介质而媒质118§5电介质中的电场电位移D

有介质时的高斯定理(Gausstheoremindieletric)

一、电介质中的电场

电介质极化时出现极化电荷,这些极化电荷和自由电荷一样,在周围空间(无论介质内部或外部)产生附加的电场E/。根据场强叠加原理,在有电介质存在时,空间任意一点的场强E是外电场E0和E/的矢量和:齐蚤配拾扭福瘸辨雏仪揉油轰揩纯撂辰扁

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论