下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1-26、为什么说“药物化学”是药学领域的带头学科?答:“药物化学”是一门历史悠久的经典科学,他的研究内容既包括着化学,又涉及生命学科,它既要研究化学药物的化学结构特征、与此相联系的理化性质、稳定性状,同时又要了解药物进入体内后的生物效应、毒副作用及药物进入体内的生物转化等化学 -生物学内容。最重要的是,“药物化学”是药学及其它学科的物质基础,只有药物化学发现或发明了新的具有生物活性的物质,才能进行药理、药动学及药剂学等的研究。所以说,药物化学是药学领域中的带头学科。1-27、药物的化学命名能否把英文化学名直译过来?为什么?答:不能。因为英语基团的排列次序是按字母顺序排列的,而中文化学名母核前的基团次序应按立体化学中的次序规则进行命名,小的原子或基团在先,大的在后。1-28、为什么说抗生素的发现是个划时代的成就?答:抗生素的价值是不可估量的,尤其是把这种全新的发现逐渐发展成为一种能够大规模生产的产品,能具有实用价值并开拓出抗生素类药物一套完善的体系研究生产方法,确实是一个划时代的成就。1-29、简述现代新药开发与研究的内容。答:从分子水平上揭示药物及具有生理活性物质的作用机制,阐明药物与受体的相互作用,探讨药物的化学结构与药效的关系,研究药物及生理活性物质在体内的吸收、转运、分布及代谢过程。1-30、简述药物的分类。答:药物可分为天然药物、半合成药物、合成药物及基因工程药物四大类,其中,天然药物又可分为植物药、抗生素和生化药物。1-31、“优降糖”作为药物的商品名是否合宜?答:“优降糖”是药物格列本脲的俗名。但该名称暗示了药物的降血糖疗效,会导致医生和患者的联想,不符合相关法规,故是不合宜的。第二章2-46、巴比妥类药物的一般合成方法中,用卤烃取代丙二酸二乙酯的氢时,当两个取代基大小不同时,一般应先引入大基团,还是小基团?为什么?答:当引入的两个烃基不同时,一般先引入较大的烃基到次甲基上。经分馏纯化后,再引入小基团。这是因为,当引入一个大基团后,因空间位阻较大,不易再接连上第二个基团,成为反应副产物。同时当引入一个大基团后,原料、一取代产物和二取代副产物的理化性质差异较大,也便于分离纯化。2-47、巴比妥药物具有哪些共同的化学性质?答:①呈弱酸性,巴比妥类药物因能形成内酰亚氨醇一内酰胺互变异构,故呈弱酸性。②水解性,巴比妥类药物因含环酰月尿结构,其钠盐水溶液,不够稳定,甚至在吸湿情况下,也能水解。③与银盐的反应,这类药物的碳酸钠的碱性溶液中与硝酸银溶液作用,先生成可溶性的一银盐,继而则生成不溶性的二银盐白色沉淀。④与铜叱噬试液的反应,这类药物分子中含有-CONHCONHC端构,能与重金属形成不溶性的络合物,可供鉴别。2-48、为什么巴比妥C5位次甲基上的两个氢原子必须全被取代,才有镇静催眠作用?答:未解离的巴比妥类药物分子较其离子易于透过细胞膜而发挥作用。巴比妥酸和一取代巴比妥酸的PKa值较小,酸性较强,在生理pH时,几乎全部解离,均无疗效。如5位上引入两个基团,生成的5,5位双取代物,则酸性大大降低,在生理 pH时,未解离的药物分子比例较大,这些分子能透过血脑屏障,进入中枢神经系统而发挥作用。2-49、如何用化学方法区别吗啡和可待因?答:利用两者还原性的差的差别可区别。区别方法是将样品分别溶于稀硫酸,加入碘化钾溶液,由于吗啡的还原性,析出游离碘呈棕色,再加氨水,则颜色转深,几乎呈黑色。可待因无此反应。2-50、合成类镇痛药的按结构可以分成几类?这些药物的化学结构类型不同,但为什么都具有类似吗啡的作用?答:合成类镇痛药按结构可分为:哌啶类、氨基酮类和苯吗喃类。它们虽然无吗啡的五环的结构,但都具吗啡镇痛药的基本结构,即:(1)分子中具有一平坦的芳环结构。(2)有一个碱性中心,能在生理 pH条件下大部分电离为阳离子,碱性中心和平坦结构在同一平面。(3)含有哌啶或类似哌啶的空间结构,而烃基部分在立体构型中,应突出在平面的前方。故合成类镇痛药能具有类似吗啡的作用。2-51、根据吗啡与可待因的结构,解释吗啡可与中性三氯化铁反应,而可待因不反应,以及可待因在浓硫酸存在下加热,又可以与三氯化铁发生显色反应的原因?答:从结构可以看出:吗啡分子中存在酚羟基,而可待因分子中的酚羟基已转化为醚键。因为酚可与中性三氯化铁反应显蓝紫色,而醚在同样条件下却不反应。但醚在浓硫酸存在下,加热,醚键可断裂重新生成酚羟基,生成的酚羟基可与三氯化铁反应显蓝紫色。2-52、试说明异戊巴比妥的化学命名。答:异戊巴比妥的化学命名采用芳杂环嘧啶作母体。按照命名规则,应把最能表明结构性质的官能团酮基放在母体上。为了表示酮基(=0)的结构,在环上碳2,4,6均应有连接两个键的位置,故采用添加氢(AddedHydrogen)的表示方法。所谓添加氢,实际上是在原母核上增加一对氢(即减少一个双键),表示方法是在结构特征位置的邻位用带括号的H表示。本例的结构特征为酮基,因有三个,即表示为2,4,6- (1H,3H,5H)喀呢三酮。2,4,6是三个酮基的位置,1,3,5是酮基的邻位。该环的编号依杂环的编号,使杂原子最小,则第五位为两个取代基的位置,取代基从小排到大,故命名为5-乙基-5(3-甲基丁基)-2,4,6(1H,3H,5H)嘧啶三酮。2-53、试说明地西泮的化学命名。答:含稠环的化合物,在命名时应选具有最多累计双键的环系作母体,再把最能表明结构性质的官能团放在母体上。地西泮的母体为苯并二氮杂卓,计有 5个双键,环上还有一个饱和位置。应用额外氢(IndicatedHydrogen指示氢)表示饱和位置,以避免出现歧义。表示的方法为位置上加 H,这样来区别可能的异构体。此外地西泮的母环上只有4个双键,除用额外氢表示的一个外,还有两个饱和位置采用加氢碳原子来表示。根据命名原则,优先用额外氢表示结构特征的位置,在本例中为2位酮基的位置,其余两个饱和位置 1、3位用氢 (化)表示。2-54、试分析酒石酸唑吡坦上市后使用人群迅速增大的原因。答:.镇静催眠药在上个世纪60年代前,主要使用巴比妥类药物,因其有成瘾性、耐受性和蓄积中毒,在60年代苯并氮卓类药物问世后,使用开始减少。苯并氮革类药物比巴比妥类的选择性高、安全范围大,对呼吸抑制小,在60年代后逐渐占主导。唑吡坦的作用类似苯并氮卓,但可选择性的与苯并氮卓⑴1型受体结合,具有强镇静作用,没有肌肉松弛和抗惊厥作用,不会引起反跳和戒断综合症,被滥用的可能性比苯并氮卓小,故问世后使用人群迅速增大。2-55、请叙述说卤加比(pragabide)作为前药的意义。成:卤加比在体内转化成丫一氨基丁酰胺,成 GABA(r一氨基丁酸)受体的激动剂,痉癫痫、痉挛状态和运动失调有良好的治疗效果。由于丫一氨基丁酰胺的极性太大,直接作为药物使用,因不能透过血脑屏障进入中枢,即不能达到作用部位,起到药物的作用。为此作成希夫碱前药,使极性减小,可以进入血脑屏。2-56、试分析选择性的5-HT重摄取抑制剂类药物并无相似结构的原因。答:一般与特定的受体结合或与酶结合的药物,因需与受体和酶在空间上适应,在典型效应上互补,同类药物大都有一些共同的结构。但重摄取抑制剂不需与受体或酶结合,有多个作用环节的可能:如阻碍吸收的路径,或与5-羟色胺复合,影响吸收 这在药物结构上无特异性要求。故该类药无相似性要求。第三章3-71、合成M受体激动剂和拮抗剂的化学结构有哪些异同点?答:相同点:①合成M胆碱受体激动剂与大部分合成 M胆碱受体拮抗剂都具有与乙酰胆碱相似的氨基部分和酯基部分;②这两部分相隔2个碳的长度为最好。不同点:①在这个乙基桥上,激动剂可有甲基取代,拮抗剂通常无取代 ;②酯基的酰基部分,激动剂应为较小的乙酰基或氨甲酰基,而拮抗剂则为较大的碳环、芳环或杂环;③氨基部分,激动剂为季钱离子,拮抗剂可为季钱离子或叔胺;④大部分合成 M胆碱受体拮抗剂的酯基的酰基a碳上带有羟基,激动剂没有;⑤一部分合成M胆碱受体拮抗剂的酯键可被-O-代替或去掉,激动剂不行。总之,合成 M胆碱受体激动剂的结构专属性要大大高于拮抗剂。3-72、叙述从生物碱类肌松药的结构特点出发,寻找毒性较低的异喹啉类 N受体拮抗剂的设计思路。答:生物碱类肌松药具有非去极化型肌松药的结构特点,即双季铵结构,两个季铵氮原子相隔10~12个原子,季铵氮原子上有较大取代基团,另外多数还都含有苄基四氢异喹啉的结构。以此结构为基础,人们从加速药物代谢的角度,设计合成了苯磺阿曲库铵(AtracuriumBesylate)为代表的一系列异喹啉类神经肌肉阻断剂。AtracuriumBesilate具有分子内对称的双季钱结构,在其季钱氮原子的B位上有吸电子基团取代,使其在体内生理条件下可以发生非酶性 Hofmann消除反应,以及非特异性血浆酯酶催化的酯水解反应,迅速代谢为无活性的代谢物,避免了对肝、肾酶催化代谢的依赖性,解决了其他神经肌肉阻断剂应用中的一大缺陷——蓄积中毒问题。在体内生理条件下Hofmann消除反应可简示如下:3-73、结构如下的化合物将具有什么临床用途和可能的不良反应?若将氮上取代的甲基换成异丙基,又将如何?答:氮上取代基的变化主要影响拟肾上腺素药物对 a受体和B受体作用的选择性。当氮上甲基取代时,即肾上腺素,对a受体和B受体均有激动作用,作用广泛而复杂,当某种作用成为治疗作用时,其他作用就可能成为辅助作用或毒副作用。肾上腺素具有兴奋心脏,使心收缩力加强,心率加快,心输出量增加,收缩血管,升高血压,舒张支气管平滑肌等主要作用。临床主要用于过敏性休克、心脏骤停和支气管哮喘的急救。不良反应一般有心悸、不安、面色苍白、头痛、震颤等。将甲基换作异丙基即为异丙肾上腺素,为非选择性B受体激动剂,对a受体几无作用,对心脏的B1受体和血管、支气管、胃肠道等平滑肌的B2受体均有激动作用。临床用于支气管哮喘、房室传导阻滞、休克、心搏骤停。常见不良反应有心悸、头痛、皮肤潮红等。3-74、苯乙醇胺类肾上腺素受体激动剂的 碳是手性碳原子,具R构型异构体的活性大大高于S构型体,试解释之。答:苯乙醇胺类与肾上腺素受体相互结合时,通过其分子中的氨基、苯环及其上酚羟基、B-羟基三个部分与受体发生三点结合。这三个部分的空间相对位置能否与受体匹配,对药物作用强度影响很大。只有B碳是 R构型的异构体可满足受体的空间要求,实现上述三点2合,而其S构型异构体因其B—羟基的位置发生改变,与受体只能有两点结合,即氨基、苯环及其上酚羟基,因而对受体的激动作用较弱。3-75、经典 H1受体拮抗剂有何突出的不良反应?为什么?第二代 H1受体拮抗剂如何克服这一缺点?答:经典H1-受体拮抗剂最突出的毒副反应是中枢抑制作用,可引起明显的镇静、嗜睡。产生这种作用的机制尚不十分清楚,有人认为这些药物易通过血脑屏障,并与脑内H1受体有高度亲和力,由此拮抗脑内的内源性组胺引起的觉醒反应而致中枢抑制。第二代H1受体拮抗剂通过限制药物进入中枢和提高药物对外周H1受体的选择性来发展新型非镇静性抗组胺药。如AcriVastine和Cetirizine就是通过引入极性或易电离基团使药物难以通过血脑屏障进入中枢,克服镇静作用的。而Mizolastine、C1emastine和Loratadine则是对外周H1受体有较高的选择性,避免中枢副作用。3-76、经典 H1受体拮抗剂的几种结构类型具有一定的联系。试分析由乙二胺类到氨基醚类、丙胺类、三环类、哌嗪类的结构变化。答:若以ArCH2(Ar')NCH2CH2NRR表示乙二胺类的基本结构,则其ArCH2(Ar')N一部分用Ar(Ar')CHOl代替就成为氨基酸类;用Ar(Ar')CH一代替就成为丙胺类,或将氨基酸类中的- M去掉,也成为丙胺类;将乙二胺类、氨基醚类、丙胺类各自结构中同原子上的两个芳环 Ar(Ar’)的邻位通过一个硫原子或两个碳原子相互连接,即构成三环类;用Ar(Ar')CHN一代替乙二胺类的ArCH2(Ar')N—,并将两个氮原子组成一个哌嗪环,就构成了哌嗪类。3-77、从procaine的结构分析其化学稳定性,说明配制注射液时的注意事项及药典规定杂质检查的原因。答:Procaine的化学稳定性较低,原因有二。其一,结构中含有酯基,易被水解失活,酸、碱和体内酯酶均能促使其水解,温度升高也加速水解。其二,结构中含有芳伯氨基,易被氧化变色,PH即温度升高、紫外线、氧、重金属离子等均可加速氧化。所以注射剂制备中要控制到稳定的 PH范围3.5〜5.0,低温灭菌(100C,30min)通入惰性气体,加入抗氧剂及金属离子掩蔽剂等稳定剂。Procaine水解生成对氨基苯甲酸和二乙氨基乙醇,所以中国药典规定要检查对氨基苯甲酸的含量。3-78、简述atropine的立体化学。答:阿托品(Atropine)为托品(Tropine,莨菪醇)与消旋托品酸的酯。托品为 3-羟基托烷,有两种处于平衡的稳定构象,分别为哌啶环呈椅式或船式构象,通常采用能量较低的椅式构象表达。托品结构中C-1、C-3、C-5为手性碳原子,但由于内消旋,故无旋光性。托品酸(Tropicacid)为-羟甲基苯乙酸,具有一个手性碳原子,天然的(-)-Tropicacid 具有s构型,其与托品形成的酯为(-)-及苔碱。Atropine为(-)-K若碱的外消旋体,无旋光活性。第四章1.以propranolol为例分析芳氧丙醇类(3-受体拮抗剂的结构特点及构效关系。答:Propranolol是在对异丙肾上腺素的构效关系研究中发现的非选择性B一受体阻滞剂,结构中含有一个氨基丙醇侧链,属于芳氧丙醇胺类化合物,1位是异丙氨基取代、3位是萘氧基取代,C2为手性碳,由此而产生的两个对映体活性不一样,左旋体活性大于右旋体,但药用其外消旋体。为了克服Propranolol用于治疗心律失常和高血压时引起的心脏抑制、发生支气管痉挛、延缓低血糖的恢复等副作用,以Propranolol为先导化合物设计并合成了许多类似物,其中大多数为芳氧丙醇胺类化合物,少数为芳基乙醇胺类化合物,这两类药物的结构都是由三个部分组成:芳环、仲醇胺侧链和 N一取代基,并具有相似的构效关系:1.芳环部分可以是苯、萘、杂环、稠环和脂肪性不饱和杂环,环上可以有甲基、氯、甲氧基、硝基等取代基,2,4-或2,3,6-同时取代时活性最佳。2.氧原子用S、CHMNCH取代,作用降低。3.C2为S构型,活性强,R构型活性降低或消失。4.N—取代基部分以叔丁基和异丙基取代活性最高,烷基碳原子数少于 3或N,N-双取代活性下降。简述钙通道阻滞剂的概念及其分类。答:钙通道阻滞剂是一类能在通道水平上选择性地阻滞 Ca2+经细胞膜上钙离子通道进入细胞内,减少细胞内 Ca2+浓度,使心肌收缩力减弱、心率减慢、血管平滑肌松弛的药物。根据 WTO寸钙通道阻滞剂的划分,钙通道阻滞剂可分为两大类:一、选择性钙通道阻滞剂,包括:1.苯烷胺类,如Verapamil。2.二氢吡啶类,如Nifedipine。3.苯并硫氮卓类,如Diltiazem。二、非选择性钙通道阻滞剂,包括: 4.氟桂利嗪类,如Cinnarizine。5.普尼拉明类,如Prenylamine。从盐酸胺碘酮的结构出发,简述其理化性质、代谢特点及临床用途。答:盐酸胺碘酮是苯并呋喃类化合物,结构中的各取代基相对较稳定,但由于羰基与取代苯环及苯并呋喃环形成共轭体系,故固态的盐酸胺碘酮仍应避光保存;其盐酸盐与一般的盐不同,在有机溶剂中易溶 (如氯仿、乙醇),而在水中几乎不溶,且盐酸盐在有机溶剂中稳定性比在水中好;结构中含碘,加硫酸加热就分解、氧化产生紫色的碘蒸气;结构中含羰基,能与2,4-二硝基苯肼形成黄色的胺碘酮 2,4-二硝基苯腙沉淀。 盐酸胺碘酮口服吸收慢,生物利用度不高,起效极慢,要一周左右才起作用,半衰期长达 33〜44天,分布广泛,可蓄积在多种组织和器官,代谢也慢,容易引起蓄积中毒。其主要代曲^物N-去乙基衍生物仍有相似的活性。盐酸胺碘酮虽是钾通道阻滞剂 ,但对钠、钙通道也有阻滞作用,对”(3受体也有非竞争性阻滞作用,为广谱抗心律失常药,长期使用可产生角膜上皮褐色微粒沉积、甲状腺功能紊乱等副作用,临床用于其他药物治疗无效的严重心律失常。4.以captopril为例,简要说明ACEI类抗高血压药的作用机制及为克服captopril的缺点及对其进行结构改造的方法。答:血管紧张素转化酶抑制剂(ACEI)类抗高血压药主要是通过抑制血管紧张素转化酶(ACE)的活性、,使血管紧张素I(AngI)不能转化为血管紧张素H(Angn),导致血浆中Angll数量下降,无法发挥其收缩血管的作用及促进醛固酮分泌作用,ACEI还能抑制缓激肽的降解,上述这些作用结果均使血压下降。卡托普利(Captopril)是根据ACE的结构设计出来的第一个上市的ACEI,为脯氨酸的衍生物,脯氨酸氮原子上连一个有甲基和巯基取代的丙酰基侧链,使Captopril具有良好的抗高血压作用,但用药后易产生皮疹、干咳、嗜酸性粒细胞增高、味觉丧失和蛋白尿的副作用.,味觉丧失可能与结构中的巯基有关,考虑到脯氨酸的吡咯环及环上的羧基阴离子对结合酶部位起到重要的作用,故在尽可能保留该部分结构特点的同时,用口一竣基苯丙胺代替航基如依那普利 (Enalapril),或用含次膦酸基的苯丁基代替巯基福辛普利(Fosinpril),再将羧基或次瞬酸基成酯,则可得到一类长效的 ACEI,上述不良反应也减少。将脯氨酸的吡咯环变成带有 L-型氨基酸结构特征的杂环或双环等,再酯化侧链的羧基如雷米普利(Ramipril),也可得到一类长效的 ACEI。写出以愈创木酚为原料合成盐酸维拉帕米的合成路线。答:VerapamilHydrochloride的合成是以愈创木酚为原料,经甲基化、氯甲基化、氰化得到3,4-二甲氧基苯乙腈,再与溴代异丙烷进行烃化反应,煌化位置在节位,得a-异丙基-3,4-二甲氧基苯乙睛,再次用澳氯丙烷进行烷基化反应,然后与 3,4-二甲氧基苯乙胺缩合,用甲醛、甲酸甲基化,最后与盐酸生成 VerapamilHydrochloride。简述NOdonordrug扩血管的作用机制。答:N0DonorDrug的作用机制:NOdonordrug首先和细胞中的巯基形成不稳定的S-亚硝基硫化合物,进而分解成不稳定的有一定脂溶性的 NM子。N0激活鸟甘酸环化酶,升高细胞中的环磷酸鸟甘 cGCMP勺水平,cGMP可激活cGMPR赖型蛋白激酶。这些激酶活化后,即能改变许多种蛋白的磷酸化状态,包括对心肌凝蛋白轻链 (the1ightchainofmyosin)的去磷酸化作用,改变状态后的肌凝蛋白不能在平滑肌收缩过程中起到正常的收缩作用,导致了血管平滑肌的松弛,血管的扩张。Lovartatin为何称为前药 ?说明其代谢物的结构特点.答(1)Lovastatin为羟甲戊二酰辅酶A还原酶抑制剂,在体外无活性,需在体内将结构中内酯环水解为开环的B-羟基酸衍生物才具有活性,故Lovastatin为一前药。此开环的B-羟基酸的结构正好与羟甲戊二酰辅酶 A还原酶的底物羟甲戊二酰辅酶 A的戊二酰结构相似,由于酶的识别错误,与其结合而失去催化活性,使内源性胆固醇合成受阻,结果能有效地降低血浆中内源性胆固醇水平,临床可用于治疗原发性高胆固醇血症和冠心病。Lovastatin的代谢主要发生在内酯环和萘环的3位上,内酯环水解成开环的B-羟基酸衍生物,而蔡环3位则可发生羟化或3位甲基氧化、脱氢成亚甲基、羟甲基、羧基等,3-羟基衍生物、3-亚甲基衍生物、3-羟基甲基衍生物的活性均比Lovastatin略低,3-羟基衍生物进一步重排为6-羟基衍生物,则失去了活性。第五章1、为什么质子泵抑制剂抑制胃酸分泌的作用强,选择性好?答:1)胃酸分泌的过程有三步。第一步,组胺、乙酰胆碱或胃泌素刺激壁细胞底一边膜上相应的受体,引起第二信使 cAM成钙离子的增加;第二步,经第二信使cAM成钙离子的介导,刺激由细胞内向细胞顶端传递;第三步,在刺激下细胞内的管状泡与顶端膜内陷形成的分泌性微管融合,原位于管状泡处的胃质子泵一H+yK+-ATP酶移至分泌性胃管,将氢离子从胞浆泵向胃腔,与从胃腔进入胞浆的钾离子交换,氢离子与顶膜转运至胃腔的氯离子形成盐酸 (即胃酸的主要成分 )分泌。质子泵抑制剂是胃酸分泌必经的最后一步,可完全阻断各种刺激引起的胃酸分泌。且因质子泵抑制剂是以共价键的方式与酶结合,故抑制胃酸分泌的作用很强。而且质子泵仅存在于胃壁细胞表面,质子泵抑制剂如Omeprazole在口服后,经十二指肠吸收,可选择性地浓缩在胃壁细胞的酸性环境中,在壁细胞中可存留24小时,因而其作用持久。即使血药浓度水平低到不能被检出,仍能发挥作用。故质子泵抑制剂的作用专一,选择性高,副作用较小。2、请简述镇吐药的分类和作用机制。答:止吐药物可阻断呕吐神经反射环的传导,达到止吐的临床治疗效果。该反射环受多种神经递质影响,如组胺、乙酰胆碱、多巴胺和5一羟色胺。止吐药,现以其作用靶点和作用机制(即拮抗的受体 )分为抗组胺受体止吐药、抗乙酰胆碱受体止吐药、抗多巴胺受体止吐药和抗 5一HT3受体的5一HT3受体拮抗剂。3、试从化学结构上分析多潘立酮比甲氧氯普胺较少中枢副作用的原因。答:作为促动力药物的多潘立酮和甲氧氯普胺,是希望作用于消化系统的多巴胺D2受体,如促进胃肠道的蠕动等起作用。但这两个药物都能进入中枢,影响中枢的多巴胺 D2受体,导致中枢神经的副作用。从结构上看多潘立酮比甲氧氯普胺含有较多的极性基团,极性较甲氧氯普胺大,不易透过血脑屏障。即相比之下,进人中枢的多潘立酮的量较少,故多潘立酮比甲氧氯普胺较少中枢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版临时劳务派遣合同示范文本4篇
- 个性化信息服务合作合同2024版版
- 2025年度销售团队劳动合同范本(直销行业专用)2篇
- 二零二五年度陆运货物运输与物流园区合作开发合同4篇
- 二零二五年高标准农田建设土石方调配合同6篇
- 二零二五年度科技创新企业临时用工聘用服务合同4篇
- 2025年度路灯设施更新改造合同范本4篇
- 二零二五年度艺术展览场地租赁与艺术品保管协议2篇
- 二手房购买协议规范文本2024版版B版
- 二零二五年房地产项目股权转让与并购合作协议3篇
- GB/T 25919.1-2010Modbus测试规范第1部分:Modbus串行链路一致性测试规范
- GB/T 22484-2008城市公共汽电车客运服务
- GB/T 14040-2007预应力混凝土空心板
- 带状疱疹护理查房课件整理
- 奥氏体型不锈钢-敏化处理
- 作物栽培学课件棉花
- 交通信号控制系统检验批质量验收记录表
- 弱电施工验收表模板
- 探究基坑PC工法组合钢管桩关键施工技术
- 国名、语言、人民、首都英文-及各地区国家英文名
- API SPEC 5DP-2020钻杆规范
评论
0/150
提交评论