河北省石家庄2023届高一数学第一学期期末学业水平测试试题含解析_第1页
河北省石家庄2023届高一数学第一学期期末学业水平测试试题含解析_第2页
河北省石家庄2023届高一数学第一学期期末学业水平测试试题含解析_第3页
河北省石家庄2023届高一数学第一学期期末学业水平测试试题含解析_第4页
河北省石家庄2023届高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设函数,若关于方程有个不同实根,则实数的取值范围为()A. B.C. D.2.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.3.已知函数,,若存在,使得,则实数的取值范围是()A. B.C. D.4.下列函数中,最小正周期是且是奇函数的是()A. B.C. D.5.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.函数,若恰有3个零点,则a的取值范围是()A. B.C. D.7.已知,则()A. B.1C. D.28.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣39.函数的单调递增区间为()A., B.,C., D.,10.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若命题,,则的否定为___________.12.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________13.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________14.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,15.函数的定义域是___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知动圆经过点和(1)当圆面积最小时,求圆的方程;(2)若圆的圆心在直线上,求圆的方程.17.已知集合,.(1)若,求;(2)在①,②,③,这三个条件中任选一个作为条件,求实数的取值范围.(注意:如果选择多个条件分别解答,则按第一个解答计分)18.已知角终边与单位圆交于点(1)求的值;(2)若,求的值.19.某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:月份用气量(立方米)煤气费(元)144.0022514.0033519.00该市煤气收费的方法是:煤气费=基本费+超额费+保险费若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元(1)根据上面的表格求A,B,C的值;(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元20.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)21.设函数f(x)=(x>0)(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求+的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】等价于,即或,转化为与和图象交点的个数为个,作出函数的图象,数形结合即可求解【详解】作出函数的图象如下图所示变形得,由此得或,方程只有两根所以方程有三个不同实根,则,故选:B【点睛】易错点点睛:本题的易错点为函数的图像无限接近直线,即方程只有两根,另外难点在于方程的变形,即因式分解2、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题3、D【解析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可【详解】当时,,即,则的值域为[0,1],当时,,则的值域为,因为存在,使得,则若,则或,得或,则当时,,即实数a的取值范围是,A,B,C错,D对.故选:D4、A【解析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】A选项,的最小正周期是,且是奇函数,A正确.B选项,的最小正周期是,且是奇函数,B错误.C选项,的最小正周期为,且是奇函数,C错误.D选项,的最小正周期是,且是偶函数,D错误.故选:A5、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.6、B【解析】画出的图像后,数形结合解决函数零点个数问题.【详解】做出函数图像如下由得,由得故函数有3个零点若恰有3个零点,即函数与直线有三个交点,则a的取值范围,故选:B7、D【解析】根据指数和对数的关系,将指数式化为对数式,再根据换底公式及对数的运算法则计算可得;【详解】解:,,,,故选:D8、D【解析】等价于二次函数的最大值不小于零,即可求出答案.【详解】设,,使得不等式成立,须,即,或,解得.故选:D【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.9、C【解析】利用正切函数的性质求解.【详解】解:令,解得,所以函数的单调递增区间为,,故选:C10、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.12、3【解析】由集合定义,及交集补集定义即可求得.【详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.13、①②③【解析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法14、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;15、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)以为直径的圆即为面积最小的圆,由此可以算出中点坐标和长度,即可求出圆的方程;(2)设出圆的标准方程,根据题意代入数值解方程组即可.【小问1详解】要使圆的面积最小,则为圆的直径,圆心,半径所以所求圆的方程为:.【小问2详解】设所求圆的方程为,根据已知条件得,所以所求圆的方程为.17、(1);(2).【解析】(1)根据并集的概念和运算,求得.(2)三个条件都是表示,由此列不等式组,解不等式组求得的取值范围.【详解】(1)当时,,所以.(2)三个条件、、都表示,所以,解得,所以实数的取值范围为【点睛】本小题主要考查集合并集的概念和运算,考查根据集合的包含关系求参数的取值范围,属于基础题.18、(1);(2)或.【解析】(1)首先根据三角函数的定义,求得三角函数值,再结合二倍角公式化简,求值;(2)利用角的变换,利用两角和的余弦公式,化简求值.【详解】解:由三角函数定义得,(1)(2)∵∴∴当时当时19、(1);(2).【解析】解:(1)月份的用气量没有超过最低额度,所以月份的用气量超过了最低额度,所以,解得(2)当时,需付费用为元当时,需付费用为元所以应交的煤气费考点:函数解析式的求解点评:解决的关键是根据实际问题,将其转化为数学模型,然后得到解析式,求解运算,属于基础题20、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解析】详解】试题分析:本题考查函数模型在实际中的应用以及分段函数最值的求法.(1)根据题意用分段函数并结合待定系数法求出函数的关系式.(2)首先由题意得到的解析式,再根据分段函数最值的求得求得最值即可试题解析:(1)由题意:当时,;当时,设由已知得解得∴综上可得(2)依题意并由(1)可得①当时,为增函数,∴当时,取得最大值,且最大值为1200②当时,,∴当时,取得最大值,且最大值为.所以的最大值为故当车流密度为100辆/千米时,车流量可以达到最大,且最大值为3333辆/小时.21、(1)见解析;(2)2;(3)见解析.【解析】(1)将函数写成分段函数,先作出函,再将x轴下方部分翻折到轴上方即可得到函数图象;(2)根据函数的图象,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论