高等固体物理_第1页
高等固体物理_第2页
高等固体物理_第3页
高等固体物理_第4页
高等固体物理_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter2ReciprocalLatticeDiffractionofWavesbyCrystalsScatteredWaveAmplitudeBrillouinZonesFourierAnalysisoftheBasisQuasicrystalsChapter2ReciprocalLattice

I.DiffractionofWavesbyCrystalQuestions:

1)Wheredoesoneatomlocateinthecrystal?2)Howcanweinvestigatethestructuresofthecrystal?Distributionsoftheatomsaswellastheelectrons?3)Canwe‘see’thestructuresforonecrystaldirectly?I.DiffractionofWavesbyCrystalingbeams:(a)Photons(x-ray):

I.DiffractionofWavesbyCrystal(b)Neutrons:(c)Electrons:SeeFigure.1三种辐射的比较Xray

波长短,穿透力强,适合研究物质结构,不适合薄膜的结构研究。需高压加速电子撞击靶产生。Neutronbeam

只需0.1eV能量便可产生波长为1埃的辐射。由于具有磁矩,中子可与磁性晶体中的电子发生相互作用。常用于磁性晶体的研究。Electronbeam

散射很强,透射能力弱。主要用于薄膜结构的研究。150V电压可产生波长为1埃的电子波。I.DiffractionofWavesbyCrystalConsiderparallellatticeplanesspaceddapart.TheBragglawis2dsin=nismeasuredfromtheplane.Braggreflectioncanoccuronlyforwavelength2d.I.DiffractionofWavesbyCrystal2dsin=nAresultoftheperiodicityofthelatticethecompositionofthebasisdeterminestherelativeintensityExperimentalResultsExperimentalResultsII.ScatteredWaveAmplitude

1.FourierAnalysisTheelectronnumberdensityn(r)isaperiodicfunctionofr:(Why?Page30)n(r+T)=n(r)(3D:Withperiodsa1,a2anda3).1Dn(x)withperioda.Weexpandn(x)inaFourierseries(Why?ThemostinterestingpropertiesofcrystalsaredirectlyrelatedtotheFouriercomponentsoftheelectrondensity!)n(x)=n0

+p[Cpcos(2px/a)+Spsin(2px/a)],thep’sarepositiveintegersandCp,Sparerealconstants.1.FourierAnalysisn(x)=n0+p[Cpcos(2px/a)+Spsin(2px/a)],n(x)=n(x+a)2p/aisapointinthereciprocallatticeorFourierspaceofthecrystal.Thecompactformn(x)=pnpexp(i2px/a),wherethesumisoverallintegerspandnpiscomplexnumber.n(x)isreal,sonp=n-*p1.FourierAnalysisFor3D:n(r)=GnGexp(iG•r),nGdeterminesthex-rayscatteringamplitude.InversionofFourierseries

PleaseReadP32!nG=Vc-1celldVn(r)exp(-iG•r),hereVcisthevolumeofacellofthecrystal.For1D,np=a-10adxn(x)exp(-i2px/a),2.ReciprocalLatticeVectors2.ReciprocalLatticeVectorsEverycrystalstructurehastwolatticesassociatedwithit,thecrystallatticeandthereciprocallattice;Adiffractionpatternofacrystalisamapofthereciprocallatticeofthecrystal;Amicroscopeimageisamapofthecrystalstructureinrealspace.Dimensions[length],[1/length]ThereciprocallatticeisalatticeintheFourierspaceassociatedwiththecrystal.2.ReciprocalLatticeVectorsTheFourierrepresentationofafunctionperiodicinthecrystallatticecancontaincomponentsnGexp(iG•r)onlyatthereciprocalvectorsGasdefinedby(15).n(r+T)=GnGexp(iG•r)exp(iG•T),butexp(iG•T)=exp[i(v1b1+v2b2+v3b3)•(u1a1+u2a2+u3a3)]=exp[i2(v1u1+v2u2+v3u3)]=1Hencen(r+T)=n(r)正倒格子间的关系

正格子中一族晶面(h1h2h3)和倒格矢Gh正交倒格矢Gh的长度正比于晶面族(h1h2h3)面间距的倒数

研究倒易点阵的意义(1)利用倒易点阵的概念可以比较方便地导出晶体几何学中各种重要关系式;(2)利用倒易点阵可以方便而形象地表示晶体的衍射几何学。例如:单晶的电子衍射图相当于一个二维倒易点阵平面的投影,每一个衍射斑点与一个倒易阵点对应。因此,倒易点阵已经成为晶体衍射工作中不可缺少的分析工具。(3)倒易矢量也可以理解为波矢k,通常用波矢来描述电子在晶体中的运动状态或晶体的振动状态。由倒易点阵基矢所张的空间称为倒易空间,可理解为状态空间(k空间)。3.DiffractionConditionsTheorem:ThesetofreciprocallatticevectorsGdeterminesthepossiblex-rayreflections.3.DiffractionConditionsThescatteringamplitudeF=dVn(r)exp(-ik•r)wherek+k=k’,kmeasuresthechangeinwavevectorandiscalledthescatteringvector.F=dVnGexp[i(G-k)•r]=VnGG=k3.DiffractionConditionsFortheelasticscatteringk2=k’2G=korG+k=k’sothatthediffractionconditionis(G+k)2=(k’)2=k2,or2k•G+G2=0,or2k•G=G2,Theisthecentralresultofthetheoryofelasticscatteringofwavesinaperiodiclattice.Itisoftenusedastheconditionfordiffraction.ItisanotherstatementoftheBraggcondition.4.LaueEquationsG=ka1•k=2v1;a2•k=2v2;a3•k=2v3;Theseequationshaveasimplegeometricalinterpretation.Thefirstequationtellsusthatkliesonaconeaboutthedirectionofa1,andsoon.TheEwaldconstruction.III.BrillouinZones(布里渊区)AbrillouinzoneisdefinedasaWigner-SeitzprimitivecellinthereciprocallatticeThevalueoftheBrillouinzoneisthatitgivesavividgeometricalinterpretationofthediffractioncondition2k•G=G2k•(G/2)=(G/2)2TheBrillouinconstructionexhibitsallthewavevectorskwhichcanbeBragg-reflectedbythecrystal.III.BrillouinZonesIII.BrillouinZonesConstructionofthefirstBrillouinzone(2D)III.BrillouinZonesConstructionofthefirstBrillouinzone(1D)ReciprocalLatticetoSCLatticeTheprimitivetranslationvectorsofsc:a1=aex,a2=aey,a3=aez,thevolumeofthecell:a1•a2a3=a3.Theprimitivetranslationvectorsofthereciprocallatticeb1=(2/a)ex,b2=(2/a)ey,b3=(2/a)ez,(sc,2/a)TheboundariesofthefirstBrillouinzonesaretheplanesnormaltothesixreciprocallatticevectors±b1,±b2,±b3attheirmidpoints.Volume(2/a)3ReciprocalLatticetobccLatticeTheprimitivetranslationvectors:a1=(a/2)(-ex+ey+ez),a2=(a/2)(ex-ey+ez),a3=(a/2)(ex+ey-ez),thevolumeofthecell:a1•a2a3=a3/2.Theprimitivetranslationvectorsofthereciprocallatticeb1=(2/a)(ey+ez),b2=(2/a)(ex+ez),b3=(2/a)(ex+ey),(fcc,2/a)G=v1b1+v2b2+v3b3;the

12shortestvectors!ThefirstBrillouinzoneisaregularrhombicdodecahedron.Volumeb1•b2b3=2(2/a)3ReciprocalLatticetobccLatticeReciprocalLatticetofccLatticeTheprimitivetranslationvectors:a1=(a/2)(ey+ez),a2=(a/2)(ex+ez),a3=(a/2)(ex+ey),thevolumeofthecell:a1•a2a3=a3/4.Theprimitivetranslationvectorsofthereciprocallatticeb1=(2/a)(-ex+ey+ez),b2=(2/a)(ex-ey+ez),b3=(2/a)(ex+ey-ez),(bcc

)G,the8shortestvectors!ThefirstBrillouinzoneisatruncatedoctahedron.Volumeb1•b2b3=4(2/a)3ReciprocalLatticetofccLatticeReciprocalLatticetofccLatticeIV.FourierAnalysisoftheBasisThescatteringamplitudeforacrystalofNcellsmaybewrittenasFG=NcelldVn(r)exp(-iG•r)=NSG,whereSGiscalledthestructurefactorandisdefinedasanintegraloverasinglecell,withr=0atonecorner.Thetotalelectronconcentrationatrduetoallatomsinthecellisn(r)=j=1snj(r-rj)sumoverthesatomsofthebasis.IV.FourierAnalysisoftheBasisThestructurefactorisSG=celldVjnj(r-rj)exp(-iG•r)=jexp(-iG•rj)

dVnj()exp(-iG•),where=r-rj.Theatomicformfactor(原子形状因子)isdefinedas:fj=dVnj()exp(-iG•),integratedoverallspace.Ifnj()isanatomicproperty,fjisanatomicproperty.IV.FourierAnalysisoftheBasisThestructurefactorofthebasisisSG=jfj

exp(-iG•rj)rj=xja1+yja2+zja3,G=v1b1+v2b2+v3b3sothatSG(v1v2v3)

=jfj

exp[-2i(v1xj+v2yj+v3zj)]thescatteredintensityisS*S.AtazeroofSGthescatteredintensitywillbezero,eventhoughGisaperfectlygoodreciprocallatticevector.StructureFactorofthebcclatticeThebccbasisreferredtothecubiccellhasidenticalatomsat(0,0,0)and(1/2,1/2,1/2)ThestructurefactorisSG(v1v2v3)

=jfj

exp[-2i(v1xj+v2yj+v3zj)]=f{1+exp[-i(v1+v2+v3)]},wherefistheformfactorofanatom.S=0whenv1+v2+v3=oddinteger;S=2fwhenv1+v2+v3=eveninteger.StructureFactorofthebcclatticeForexample,metallicsodiumhasabccstructure.Thediffractionpatterndoesnotcontainlinessuchas(100),(300),(111),or(221),butlinessuchas(200),(110),and(222)willbepresent.Theindices(v1v2v3)

arereferredtoacubiccell.StructureFactorofthebcclatticeThephysicalinterpretationoftheresultthatthe(100)reflectionvanishes.StructureFactorofthefcclatticeThebasisofthefccstructurereferredtothecubiccellhasidenticalatomsat(000),(0,1/2,1/2),(1/2,0,1/2),(1/2,1/2,0).SG(v1v2v3)

=jfj

exp[-2i(v1xj+v2yj+v3zj)]=f{1+exp[-i(v2+v3)]+exp[-i(v1+v3)]+exp[-i(v1+v2)]},Ifallindicesareevenintegers,S=4f;similarlyifallindicesareoddintegers.Butifonlyoneoftheintegersiseven,Swillvanish.Ifonlyoneoftheintegersisodd,Swillalsovanish.StructureFactorofthefcclatticeInthefcclatticenoreflectionscanoccurforwhichtheindicesarepartlyevenandpartlyodd.KClandKBrhaveanfcclattice,KClsimulatesansclatticebecausetheK+andCl-ionshaveequalnumbersofelectrons.StructureFactorofthefcclatticeAtomicFormFactorfj=dVnj(r)exp(-iG•r),withtheintegralextendedovertheelectronconcentrationassociatedwithasingleatom.G•r=Grcos,iftheelectrondistributionissphericallysymmetricabouttheorigin,thenfj=4drr2nj(r)(sinGr/Gr),Ifthesametotalelectrondensitywereconcentratedatr=0.Inthislimit(sinGr/Gr)=1andfj=4drr2nj(r)=Z,thenumberofatomicelectronsIntheforwarddirectionG=0,f=Z.AtomicFormFactorQuasicrystalsIn1984quasicrystalswerefirstobserved(D.S.Schechtmanetal.Phys.Rev.Lett.53,1951(198

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论