




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter2ReciprocalLatticeDiffractionofWavesbyCrystalsScatteredWaveAmplitudeBrillouinZonesFourierAnalysisoftheBasisQuasicrystalsChapter2ReciprocalLattice
I.DiffractionofWavesbyCrystalQuestions:
1)Wheredoesoneatomlocateinthecrystal?2)Howcanweinvestigatethestructuresofthecrystal?Distributionsoftheatomsaswellastheelectrons?3)Canwe‘see’thestructuresforonecrystaldirectly?I.DiffractionofWavesbyCrystalingbeams:(a)Photons(x-ray):
I.DiffractionofWavesbyCrystal(b)Neutrons:(c)Electrons:SeeFigure.1三种辐射的比较Xray
波长短,穿透力强,适合研究物质结构,不适合薄膜的结构研究。需高压加速电子撞击靶产生。Neutronbeam
只需0.1eV能量便可产生波长为1埃的辐射。由于具有磁矩,中子可与磁性晶体中的电子发生相互作用。常用于磁性晶体的研究。Electronbeam
散射很强,透射能力弱。主要用于薄膜结构的研究。150V电压可产生波长为1埃的电子波。I.DiffractionofWavesbyCrystalConsiderparallellatticeplanesspaceddapart.TheBragglawis2dsin=nismeasuredfromtheplane.Braggreflectioncanoccuronlyforwavelength2d.I.DiffractionofWavesbyCrystal2dsin=nAresultoftheperiodicityofthelatticethecompositionofthebasisdeterminestherelativeintensityExperimentalResultsExperimentalResultsII.ScatteredWaveAmplitude
1.FourierAnalysisTheelectronnumberdensityn(r)isaperiodicfunctionofr:(Why?Page30)n(r+T)=n(r)(3D:Withperiodsa1,a2anda3).1Dn(x)withperioda.Weexpandn(x)inaFourierseries(Why?ThemostinterestingpropertiesofcrystalsaredirectlyrelatedtotheFouriercomponentsoftheelectrondensity!)n(x)=n0
+p[Cpcos(2px/a)+Spsin(2px/a)],thep’sarepositiveintegersandCp,Sparerealconstants.1.FourierAnalysisn(x)=n0+p[Cpcos(2px/a)+Spsin(2px/a)],n(x)=n(x+a)2p/aisapointinthereciprocallatticeorFourierspaceofthecrystal.Thecompactformn(x)=pnpexp(i2px/a),wherethesumisoverallintegerspandnpiscomplexnumber.n(x)isreal,sonp=n-*p1.FourierAnalysisFor3D:n(r)=GnGexp(iG•r),nGdeterminesthex-rayscatteringamplitude.InversionofFourierseries
PleaseReadP32!nG=Vc-1celldVn(r)exp(-iG•r),hereVcisthevolumeofacellofthecrystal.For1D,np=a-10adxn(x)exp(-i2px/a),2.ReciprocalLatticeVectors2.ReciprocalLatticeVectorsEverycrystalstructurehastwolatticesassociatedwithit,thecrystallatticeandthereciprocallattice;Adiffractionpatternofacrystalisamapofthereciprocallatticeofthecrystal;Amicroscopeimageisamapofthecrystalstructureinrealspace.Dimensions[length],[1/length]ThereciprocallatticeisalatticeintheFourierspaceassociatedwiththecrystal.2.ReciprocalLatticeVectorsTheFourierrepresentationofafunctionperiodicinthecrystallatticecancontaincomponentsnGexp(iG•r)onlyatthereciprocalvectorsGasdefinedby(15).n(r+T)=GnGexp(iG•r)exp(iG•T),butexp(iG•T)=exp[i(v1b1+v2b2+v3b3)•(u1a1+u2a2+u3a3)]=exp[i2(v1u1+v2u2+v3u3)]=1Hencen(r+T)=n(r)正倒格子间的关系
正格子中一族晶面(h1h2h3)和倒格矢Gh正交倒格矢Gh的长度正比于晶面族(h1h2h3)面间距的倒数
研究倒易点阵的意义(1)利用倒易点阵的概念可以比较方便地导出晶体几何学中各种重要关系式;(2)利用倒易点阵可以方便而形象地表示晶体的衍射几何学。例如:单晶的电子衍射图相当于一个二维倒易点阵平面的投影,每一个衍射斑点与一个倒易阵点对应。因此,倒易点阵已经成为晶体衍射工作中不可缺少的分析工具。(3)倒易矢量也可以理解为波矢k,通常用波矢来描述电子在晶体中的运动状态或晶体的振动状态。由倒易点阵基矢所张的空间称为倒易空间,可理解为状态空间(k空间)。3.DiffractionConditionsTheorem:ThesetofreciprocallatticevectorsGdeterminesthepossiblex-rayreflections.3.DiffractionConditionsThescatteringamplitudeF=dVn(r)exp(-ik•r)wherek+k=k’,kmeasuresthechangeinwavevectorandiscalledthescatteringvector.F=dVnGexp[i(G-k)•r]=VnGG=k3.DiffractionConditionsFortheelasticscatteringk2=k’2G=korG+k=k’sothatthediffractionconditionis(G+k)2=(k’)2=k2,or2k•G+G2=0,or2k•G=G2,Theisthecentralresultofthetheoryofelasticscatteringofwavesinaperiodiclattice.Itisoftenusedastheconditionfordiffraction.ItisanotherstatementoftheBraggcondition.4.LaueEquationsG=ka1•k=2v1;a2•k=2v2;a3•k=2v3;Theseequationshaveasimplegeometricalinterpretation.Thefirstequationtellsusthatkliesonaconeaboutthedirectionofa1,andsoon.TheEwaldconstruction.III.BrillouinZones(布里渊区)AbrillouinzoneisdefinedasaWigner-SeitzprimitivecellinthereciprocallatticeThevalueoftheBrillouinzoneisthatitgivesavividgeometricalinterpretationofthediffractioncondition2k•G=G2k•(G/2)=(G/2)2TheBrillouinconstructionexhibitsallthewavevectorskwhichcanbeBragg-reflectedbythecrystal.III.BrillouinZonesIII.BrillouinZonesConstructionofthefirstBrillouinzone(2D)III.BrillouinZonesConstructionofthefirstBrillouinzone(1D)ReciprocalLatticetoSCLatticeTheprimitivetranslationvectorsofsc:a1=aex,a2=aey,a3=aez,thevolumeofthecell:a1•a2a3=a3.Theprimitivetranslationvectorsofthereciprocallatticeb1=(2/a)ex,b2=(2/a)ey,b3=(2/a)ez,(sc,2/a)TheboundariesofthefirstBrillouinzonesaretheplanesnormaltothesixreciprocallatticevectors±b1,±b2,±b3attheirmidpoints.Volume(2/a)3ReciprocalLatticetobccLatticeTheprimitivetranslationvectors:a1=(a/2)(-ex+ey+ez),a2=(a/2)(ex-ey+ez),a3=(a/2)(ex+ey-ez),thevolumeofthecell:a1•a2a3=a3/2.Theprimitivetranslationvectorsofthereciprocallatticeb1=(2/a)(ey+ez),b2=(2/a)(ex+ez),b3=(2/a)(ex+ey),(fcc,2/a)G=v1b1+v2b2+v3b3;the
12shortestvectors!ThefirstBrillouinzoneisaregularrhombicdodecahedron.Volumeb1•b2b3=2(2/a)3ReciprocalLatticetobccLatticeReciprocalLatticetofccLatticeTheprimitivetranslationvectors:a1=(a/2)(ey+ez),a2=(a/2)(ex+ez),a3=(a/2)(ex+ey),thevolumeofthecell:a1•a2a3=a3/4.Theprimitivetranslationvectorsofthereciprocallatticeb1=(2/a)(-ex+ey+ez),b2=(2/a)(ex-ey+ez),b3=(2/a)(ex+ey-ez),(bcc
)G,the8shortestvectors!ThefirstBrillouinzoneisatruncatedoctahedron.Volumeb1•b2b3=4(2/a)3ReciprocalLatticetofccLatticeReciprocalLatticetofccLatticeIV.FourierAnalysisoftheBasisThescatteringamplitudeforacrystalofNcellsmaybewrittenasFG=NcelldVn(r)exp(-iG•r)=NSG,whereSGiscalledthestructurefactorandisdefinedasanintegraloverasinglecell,withr=0atonecorner.Thetotalelectronconcentrationatrduetoallatomsinthecellisn(r)=j=1snj(r-rj)sumoverthesatomsofthebasis.IV.FourierAnalysisoftheBasisThestructurefactorisSG=celldVjnj(r-rj)exp(-iG•r)=jexp(-iG•rj)
dVnj()exp(-iG•),where=r-rj.Theatomicformfactor(原子形状因子)isdefinedas:fj=dVnj()exp(-iG•),integratedoverallspace.Ifnj()isanatomicproperty,fjisanatomicproperty.IV.FourierAnalysisoftheBasisThestructurefactorofthebasisisSG=jfj
exp(-iG•rj)rj=xja1+yja2+zja3,G=v1b1+v2b2+v3b3sothatSG(v1v2v3)
=jfj
exp[-2i(v1xj+v2yj+v3zj)]thescatteredintensityisS*S.AtazeroofSGthescatteredintensitywillbezero,eventhoughGisaperfectlygoodreciprocallatticevector.StructureFactorofthebcclatticeThebccbasisreferredtothecubiccellhasidenticalatomsat(0,0,0)and(1/2,1/2,1/2)ThestructurefactorisSG(v1v2v3)
=jfj
exp[-2i(v1xj+v2yj+v3zj)]=f{1+exp[-i(v1+v2+v3)]},wherefistheformfactorofanatom.S=0whenv1+v2+v3=oddinteger;S=2fwhenv1+v2+v3=eveninteger.StructureFactorofthebcclatticeForexample,metallicsodiumhasabccstructure.Thediffractionpatterndoesnotcontainlinessuchas(100),(300),(111),or(221),butlinessuchas(200),(110),and(222)willbepresent.Theindices(v1v2v3)
arereferredtoacubiccell.StructureFactorofthebcclatticeThephysicalinterpretationoftheresultthatthe(100)reflectionvanishes.StructureFactorofthefcclatticeThebasisofthefccstructurereferredtothecubiccellhasidenticalatomsat(000),(0,1/2,1/2),(1/2,0,1/2),(1/2,1/2,0).SG(v1v2v3)
=jfj
exp[-2i(v1xj+v2yj+v3zj)]=f{1+exp[-i(v2+v3)]+exp[-i(v1+v3)]+exp[-i(v1+v2)]},Ifallindicesareevenintegers,S=4f;similarlyifallindicesareoddintegers.Butifonlyoneoftheintegersiseven,Swillvanish.Ifonlyoneoftheintegersisodd,Swillalsovanish.StructureFactorofthefcclatticeInthefcclatticenoreflectionscanoccurforwhichtheindicesarepartlyevenandpartlyodd.KClandKBrhaveanfcclattice,KClsimulatesansclatticebecausetheK+andCl-ionshaveequalnumbersofelectrons.StructureFactorofthefcclatticeAtomicFormFactorfj=dVnj(r)exp(-iG•r),withtheintegralextendedovertheelectronconcentrationassociatedwithasingleatom.G•r=Grcos,iftheelectrondistributionissphericallysymmetricabouttheorigin,thenfj=4drr2nj(r)(sinGr/Gr),Ifthesametotalelectrondensitywereconcentratedatr=0.Inthislimit(sinGr/Gr)=1andfj=4drr2nj(r)=Z,thenumberofatomicelectronsIntheforwarddirectionG=0,f=Z.AtomicFormFactorQuasicrystalsIn1984quasicrystalswerefirstobserved(D.S.Schechtmanetal.Phys.Rev.Lett.53,1951(198
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年自治区科技厅直属事业单位引进考试真题
- 修缮采购协议合同范本
- 兼职辅导老师合同范例
- 新能源汽车动力蓄电池系统构造与检修 项目三-课后习题带答案
- 劳务分包用工合同范本
- 公司销售渠道合同范本
- 农民玉米出售合同范本
- 2024年杭州银行招聘考试真题
- 2024年江西省人才服务有限公司招聘笔试真题
- 企业雇佣货车合同范本
- JGJ133-2001 金属与石材幕墙工程技术规范
- 稳定性冠心病诊断与治疗指南
- DL-T5704-2014火力发电厂热力设备及管道保温防腐施工质量验收规程
- (高清版)JGT 225-2020 预应力混凝土用金属波纹管
- JT-T-610-2004公路隧道火灾报警系统技术条件
- 初中英语比较级和最高级专项练习题含答案
- 鉴赏诗歌人物形象市公开课一等奖省赛课微课金奖课件
- 大坝安全监测系统验收规范
- 2024年南京铁道职业技术学院单招职业技能测试题库及答案解析
- 校园超市经营投标方案(技术方案)
- 康复医院建筑设计标准
评论
0/150
提交评论