




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.2.设集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},则AB中所有元素之积A.-8B.-16C.8D.163.函数的单调递增区间是()A. B.C. D.4.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)5.函数y=xcosx+sinx在区间[–π,π]的图象大致为()A. B.C. D.6.下列与的终边相同的角的集合中正确的是()A. B.C. D.7.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.8.已知函数,若函数恰有两个零点,则实数的取值范围是A. B.C. D.9.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.10.已知函数若则的值为().A. B.或4C. D.或4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.计算:__________.12.已知扇形的弧长为,且半径为,则扇形的面积是__________.13.已知,则________.14.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.15.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数为偶函数.(1)判断在上的单调性并证明;(2)求函数在上的最小值.17.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.18.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.19.已知集合,函数的定义域为集合.(1)若,求实数的取值范围;(2)求满足的实数的取值范围.20.已知函数.(1)求函数的最小正周期和单调区间;(2)求函数在上的值域.21.已知函数,(1)求函数的单调递增区间;(2)当时,方程恰有两个不同的实数根,求实数的取值范围;(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】求出幂函数的解析式,然后求解函数值【详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:2、C【解析】∵集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},∴AB={2,-4,-1},故AB中所有元素之积为:2×(-4)×(-1)=8故选C3、B【解析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键4、C【解析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【点睛】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.5、A【解析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象.【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD错误;且时,,据此可知选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项6、C【解析】由任意角的定义判断【详解】,故与其终边相同的角的集合为或角度制和弧度制不能混用,只有C符合题意故选:C7、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题8、A【解析】因为,且各段单调,所以实数的取值范围是,选A.点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解9、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C10、B【解析】利用分段讨论进行求解.【详解】当时,,(舍);当时,,或(舍);当时,,;综上可得或.故选:B.【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】直接利用二倍角公式计算得到答案.【详解】.故答案为:.12、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.13、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.14、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题15、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)在上单调递增,证明见解析(2)【解析】(1)先利用函数的奇偶性求得,然后利用单调性的定义证得,从而证得在上递增.(2)利用换元法化简,对进行分类讨论,结合二次函数的性质求得在上的最小值.【小问1详解】为偶函数,,即,,则.所以.在为增函数,证明如下:任取,,且,,,,,.即,在上单调递增.【小问2详解】,令,结合题意及(1)的结论可知.,.①当时,;②当时,;③当时,.综上,.17、见解析【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求得函数的最大值.(2)将(1)中求得的角代入正弦函数的递增区间,解出的取值范围,即为函数的递增区间.【试题解析】(Ⅰ),当时,有最大值.(Ⅱ)令,得函数的单调递增区间为【点睛】本题主要考查向量的数量积运算,考查三角函数辅助角公式,考查三角函数最大最小值的求法,考查三角函数单调性即三角函数图像与性质.首先根据向量数量积的运算,化简函数,这是题目中向量坐标运算的运用,化简三角函数要为次数是一次的形如的形式.18、(1);(2)天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元.【解析】(1)设出比例系数,根据题意得到建设费用y(万元)表示成P站与甲城距离x(km)的函数的解析式,再利用代入法求出比例系数,进而求出函数解析式、定义域;(2)利用配方法进行求解即可.【详解】(1)设比例系数为k,则又,,所以,即,所以(1)由(1)可得所以所以当时,y有最小值为1250万元所以天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元,19、(1)或;(2)或.【解析】(1)由知4满足函数的定义域,由此可得,解不等式可得所求范围.(2)由可得,再根据的大小关系求得集合A,然后根据转化为关于实数的不等式组,解不等式组可得所求范围试题解析:(1)因为,∴,解得或.∴实数的取值范围为(2)由于,当时,即时,,函数无意义,∴,由,得,解得,∴.①当,即时,,由得,解得;②当,即时,,,此时不满足;③当,即时,,由得,解得.又,故.综上或∴实数的取值范围是或.点睛:(1)解答本题时要注意分类讨论的运用,根据实数的不同的取值得到不同的集合;另外还应注意转化思想的运用,在本题中将集合间的包含关系转化为不等式组求解(2)对于题中的对数函数,要注意定义域的限制,特别是在本题中得到这一隐含条件是被容易忽视的问题20、⑴,递增区间,递减区间⑵【解析】整理函数的解析式可得:.(1)由最小正周期公式和函数的解析式求解最小正周期和单调区间即可.⑵结合函数的定义域和三角函数的性质可得函数的值域为.详解】.(1),递增区间满足:,据此可得,单调递增区间为,递减区间满足:,据此可得,单调递减区间为.(2),,,,的值域为.【点睛】本题主要考查三角函数的性质,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.21、(1);(2);(3)【解析】(1)由余弦函数的单调性,解不等式,,即可求出;(2)利用函数的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 情商 趣味测试题及答案
- 深入探讨系统架构设计师考试中的知识管理与信息共享能力分析试题及答案
- 网络规划设计师考试发展方向分析试题及答案
- 芜湖护士面试题及答案
- 穿刺护理技术及注意事项试题及答案
- 药物研发中的团队协作试题及答案
- 药学审计考试题及答案
- 了解先进专利技术试题及答案
- 育婴师在儿童情绪管理中的策略考题试题及答案
- 2024年春三年级语文下册第一单元口语交际春天去哪儿玩教案新人教版
- 班组长报·联·商课件
- 项目经理变更说明(申请)
- 《将进酒》课件23张
- 机房动力环境监控课件
- 医疗垃圾收集流程及鹅颈式打结方法考评标准
- 油气管道高后果区管段识别分级表
- 班前安全活动记录(真石漆班组)
- 县级城投公司人事管理制度
- 无损检测超声波检测课件
- 生产中断影响及生产组织管理考核办法
- 【图文】GB8624-2012建筑材料及制品燃烧性能分级(精)
评论
0/150
提交评论