福建省南安市柳城中学2023届高一上数学期末联考试题含解析_第1页
福建省南安市柳城中学2023届高一上数学期末联考试题含解析_第2页
福建省南安市柳城中学2023届高一上数学期末联考试题含解析_第3页
福建省南安市柳城中学2023届高一上数学期末联考试题含解析_第4页
福建省南安市柳城中学2023届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.函数的最大值为A.2 B.C. D.42.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}3.下列四个选项中正确的是()A B.C. D.4.某学校在数学联赛的成绩中抽取100名学生的笔试成绩,统计后得到如图所示的分布直方图,这100名学生成绩的中位数估值为A.80 B.82C.82.5 D.845.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知函数的最小正周期为π,且关于中心对称,则下列结论正确的是()A. B.C D.7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.28.设,,且,则A. B.C. D.9.下列结论正确的是()A.不相等的角终边一定不相同B.,,则C.函数的定义域是D.对任意的,,都有10.已知函数,则()A.-1 B.2C.1 D.511.下列叙述正确的是()A.三角形的内角是第一象限角或第二象限角 B.钝角是第二象限角C.第二象限角比第一象限角大 D.不相等的角终边一定不同12.设都是非零向量,下列四个条件中,一定能使成立的是()A. B.//C. D.二、填空题(本大题共4小题,共20分)13.定义在上的函数则的值为______14.一个几何体的三视图如图所示,则该几何体的体积为__________.15.已知的图象的对称轴为_________________16.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.三、解答题(本大题共6小题,共70分)17.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.18.已知函数(且).(1)判断函数的奇偶性,并证明;(2)若,不等式在上恒成立,求实数的取值范围;(3)若且在上最小值为,求m的值.19.已知集合,(1)当,求;(2)若,求的取值范围.20.已知奇函数和偶函数满足(1)求和的解析式;(2)存在,,使得成立,求实数a的取值范围21.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.22.函数,在内只取到一个最大值和一个最小值,且当时,;当时,(1)求此函数的解析式;(2)求此函数的单调递增区间

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.2、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算3、D【解析】根据集合与集合关系及元素与集合的关系判断即可;【详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D4、B【解析】中位数的左边和右边的直方图的面积相等,由此可以估计中位数的值,,中位数为,故选B.5、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.6、B【解析】根据周期性和对称性求得函数解析式,再利用函数单调性即可比较函数值大小.【详解】根据的最小正周期为,故可得,解得.又其关于中心对称,故可得,又,故可得.则.令,解得.故在单调递增.又,且都在区间中,且,故可得.故选:.【点睛】本题考查由三角函数的性质求解析式,以及利用三角函数的单调性比较函数值大小,属综合基础题.7、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围9、B【解析】根据对数函数与三角函数的性质依次讨论各选项即可得答案.【详解】解:对于A选项,例如角的终边相同,但不相等,故错误;对于B选项,,,则,故正确;对于C选项,由题,解得,即定义域是,故错误;对于D选项,对数不存在该运算法则,故错误;故选:B10、A【解析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.【详解】∵在这个范围之内,∴故选:A.【点睛】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.11、B【解析】利用象限角、钝角、终边相同角的概念逐一判断即可.【详解】∵直角不属于任何一个象限,故A不正确;钝角属于是第二象限角,故B正确;由于120°是第二象限角,390°是第一象限角,故C不正确;由于20°与360°+20°不相等,但终边相同,故D不正确.故选B【点睛】本题考查象限角、象限界角、终边相同的角的概念,综合应用举反例、排除等手段,选出正确的答案12、D【解析】由得若,即,则向量共线且方向相反,因此当向量共线且方向相反时,能使成立,本题选择D选项.二、填空题(本大题共4小题,共20分)13、【解析】∵定义在上的函数∴故答案为点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围14、【解析】该几何体是一个半圆柱,如图,其体积为.考点:几何体的体积.15、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:16、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.三、解答题(本大题共6小题,共70分)17、(1);(2)天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元.【解析】(1)设出比例系数,根据题意得到建设费用y(万元)表示成P站与甲城距离x(km)的函数的解析式,再利用代入法求出比例系数,进而求出函数解析式、定义域;(2)利用配方法进行求解即可.【详解】(1)设比例系数为k,则又,,所以,即,所以(1)由(1)可得所以所以当时,y有最小值为1250万元所以天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元,18、(1)为奇函数,证明见解析.(2).(3).【解析】(1)根据函数的奇偶性的定义可得证;(2)由(1)得出是定义域为的奇函数,再判断出是上的单调递增,进而转化为,进而可求解;(3)利用,可得到,所以,令,则,进而对二次函数对称轴讨论求得最值即可求出的值.【小问1详解】解:函数的定义域为,又,∴为奇函数.【小问2详解】解:,∵,∴,或(舍).∴单调递增.又∵为奇函数,定义域为R,∴,∴所以不等式等价于,,,∴.故的取值范围为.【小问3详解】解:,解得(舍),,令,∵,∴,,当时,,解得(舍),当时,,解得(舍),综上,.19、(1)(2)【解析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为20、(1),(2)【解析】(1)利用奇偶性得到方程组,求解和的解析式;(2)在第一问的基础上,问题转化为在上有解,分类讨论,结合对勾函数单调性求解出的最值,进而求出实数a的取值范围.【小问1详解】因为奇函数和偶函数满足①,所以②;联立①②得:,;【小问2详解】变形为,因为,所以,所以,当时,在上有解,符合要求;令,由对勾函数可知,当时,在上单调递减,在上单调递增,,要想上有解,只需,解得:,所以;若且,在上单调递增,要想上有解,只需,解得:,所以;综上:实数a的取值范围为21、(1)(2)或.【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可试题解析:(1)∵圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,∴圆的方程为.(2)设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.假如以为直径的圆能过原点,则.∵圆心到直线的距离为,∴.∴,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论