版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若曲线与直线始终有交点,则的取值范围是A. B.C. D.2.已知函数是定义在R上的偶函数,且在上是单调递减的,设,,,则a,b,c的大小关系为()A. B.C. D.3.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.4.当时,函数和的图像只可能是()A. B.C. D.5.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为6.已知函数,若当时,恒成立,则实数的取值范围是A. B.C. D.7.三个数的大小关系是()A. B.C. D.8.已知,且,则A. B.C. D.9.设集合,,则集合=()A B.C. D.10.下列函数是偶函数且值域为的是()①;②;③;④A.①② B.②③C.①④ D.③④11.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.12.设命题,则为A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知向量=(1,2)、=(2,λ),,∥,则λ=______14.已知角的终边经过点,则的值等于_____15.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.16.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.三、解答题(本大题共6小题,共70分)17.如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为45°,求直线CD与平面PCE所成角的正弦值18.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.19.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.20.已知A,B,C是三角形三内角,向量,,且(1)求角A;(2)若,求21.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围22.如图,三棱柱中,点是的中点.(1)求证:平面;(2)若平面,,,,求二面角的大小.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.2、A【解析】先判断出上单调递增,由,即可得到答案.【详解】因为函数是定义在R上的偶函数,所以的图像关于y轴对称,且.又在上是单调递减的,所以在上单调递增.因为,,所以:,所以,即.故选:A3、C【解析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【详解】正五边形的一个内角为,则,,,所以故选:C.4、A【解析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【点睛】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.5、A【解析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.6、D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D点睛:本题考查函数的奇偶性和单调性应用.本题中,结合函数的奇偶性和单调性的特点,转化得到,分参,结合恒成立的特点,得到,求出参数范围7、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A8、A【解析】由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系与二倍角公式,求得的值【详解】解:∵tan(α),则tanα,∵tanα,sin2α+cos2α=1,α∈(,0),可得sinα∴2sinα=2()故选A点睛】本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题9、B【解析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B10、C【解析】根据奇偶性的定义依次判断,并求函数的值域即可得答案.【详解】对于①,是偶函数,且值域为;对于②,是奇函数,值域为;对于③,是偶函数,值域为;对于④,偶函数,且值域为,所以符合题意的有①④故选:C.11、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题12、C【解析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.二、填空题(本大题共4小题,共20分)13、-2【解析】首先由的坐标,利用向量的坐标运算可得,接下来由向量平行的坐标运算可得,求解即可得结果【详解】∵,∴,∵∥,,∴,解得,故答案为:-214、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.15、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法16、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.三、解答题(本大题共6小题,共70分)17、(1)见解析(2)2【解析】1连接BD,交AC于点O,设PC中点为F,连接OF,EF,先证出BD∥EF,再证出EF⊥平面PAC,,结合面面垂直的判定定理即可证平面PAC⊥平面PCE;2先证明∠PCA=45°,设CD的中点为M,连接AM,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2解析:(1)证明:连接BD,交AC于点O,设PC中点为F,连接OF,EF∵O,F分别为AC,PC的中点,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四边形OFED为平行四边形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE⊂平面PCE,∴平面PAC⊥平面PCE(2)因为直线PC与平面ABCD所成角为45°,所以∠PCA=45°,所以AC=PA=2,所以AC=AB,故ΔABC为等边三角形,设CD的中点为M,连接AM,则AM⊥CD,设点D到平面PCE的距离为h1,点P到平面CDE的距离为h则由VD-PCE=V因为ED⊥面ABCD,AM⊂面ABCD,所以ED⊥AM,又AM⊥CD,CD∩DE=D,∴AM⊥面CDE;因为PA//DE,PA⊄平面CDE,DE⊂面CDE,所以PA//面CDE,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2因为PE=EC=5,PC=22,所以又SΔCDE=1,代入(*)得6⋅设CD与平面PCE所成角的正弦值为2418、(1)(2)或.【解析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【点睛】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.19、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得20、(1)(2)【解析】(1)用数量积的坐标运算表示出,有,再由两角差的正弦公式化为一个三角函数式,最终求得;(2)化简,可直接去分母,注意求得结果后检验分母是否为0(本题解法),也可先化简已知式为,再变形得,由可得结论试题解析:(1)∵,∴,即,,,∵,,∴,∴(2)由题知:,整理得,∴,∴,∴或,而使,舍去,∴,∴考点:数量积坐标运算,两角和与差的正弦公式、正切公式21、(1)(2)或【解析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合与集合之间的关系,即可完成求解.【小问1详解】当时,集合,集合,所以;【小问2详解】i.当选择条件①时,集合,当时,,舍;当集合时,即集合,时,,此时要满足,则,解得,结合,所以实数m的取值范围为或;ii.当选择条件②时,要满足是的充分条件,则需满足在集合时,集合是集合的子集,即,解得,所以实数m取值范围为或;iii.当选择条件③时,要使得,使得,那么需满足在集合时,集合是集合子集,即,解得,所以实数m的取值范围为或;故,实数m的取值范围为或.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗器械销售合同(二零二四年度)
- 二零二四年物业管理合同
- 农副产品购销合同协议书范本
- 2024版租赁合同:商用物业租赁与经营管理3篇
- 公对公借款合同标准版
- 个人买卖手车合同范本
- 护理就业合同书
- 2024年度光伏发电设备维修与保养合同3篇
- 技术合同转让合同范本
- 事业单位聘用合同聘请合同
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 2023-2024学年教科版三年级上学期科学期中检测试卷(含答案)
- 钻井作业指导书
- 供应链管理:高成本、高库存、重资产的解决方案 第2版
- CRPS电源设计向导 CRPS Design Guide r-2017
- 2023年上海国际集团有限公司校园招聘笔试题库及答案解析
- 热管空气预热器计算
- 流体输送技术
- 软件测试_测试用例实例(含:功能测试用例、性能测试用例、兼容性测试用例)
- 《园林植物景观设计》期末试卷试题A卷
评论
0/150
提交评论