




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1导数的概念导数的概念优秀课件1大纲要求(1)了解导数、微分的几何意义;隐函数的求导方法;二阶导数;
(3)掌握导数的运算法则;复合函数的求导法则;导数的基本公式;洛必达法则;
(2)理解导数、微分、极值、最值的概念;
(4)会求未定式的极限;会求函数的极值与最大(小)值;会判断函数的单调性;大纲要求(1)了解导数、微分的几何意义;隐函数的求导方法;二2
微分学是微积分的重要组成部分,它的基本概念是导数与微分,而求导数是微分学中的基本运算.在本章中,我们主要讨论导数与微分的概念、它们的计算方法及其应用.曲线的切线的斜率、运动物体在某时刻的速度,其实质是对应函数中函数相对于自变量的变化率,即导数.以下介绍导数的定义.微分学是微积分的重要组成部分,它的基本概念是导数与微3定义:设y=f(x)在x0的某邻域U(x0)内有定义.如果当x0时,的极限存在,则称这个极限值为f(x)在x0处的导数,记作f'(x0),即一、导数的定义定义:设y=f(x)在x0的某邻域U(x0)内有定义.4存在,则称f(x)在x0可导(或称f(x)在x0
的导数存在).否则,称f(x)在x0不可导(或称f(x)在x0的导数不存在).特别注1.若存在,则称f(x)在x0可导(或称f(x)在x0的导5若记x=x0+x,当x0时,xx0,特别,取x0=0,且若f(0)=0,有注2.导数定义还有其他等价形式,若记x=x0+x,当x0时,xx0,特别,取6注3.由于称为f(x)在x0的右导数.称为f(x)在x0的左导数.定理:
f(x)在x0可导f(x)在x0的左,右导数存在且相等.注3.由于称为f(x)在x0的右导数.称为f(x)在7注4.若y=f(x)在(a,b)内每点可导,则称f(x)在(a,b)内可导.称为y=f(x)的导函数.此时,x(a,b)都有唯一确定的值f'(x)与之对应,所以导数是x的函数.注4.若y=f(x)在(a,b)内每点可导,则称8按定义,f'(x)就是x所对应的导数值,这个式子就是导函数的表达式.而f'(x0)就是f'(x)在x=x0处的函数值,即另外,求按定义,f'(x)就是x所对应的导数值,这个式子就是导9用定义求导数一般可分三步进行.设y=f(x)在点x处可导(1)求y=f(x+x)f(x)(2)求比值(3)求极限二、求导举例用定义求导数一般可分三步进行.设y=f(x)在点x处可10例1.求y=C(常数)的导数.解:(1)y=f(x+x)f(x)=CC=0(2)(3)故(C)'=0,即常数的导数为0.例1.求y=C(常数)的导数.解:(1)y=11例2.设y=f(x)=x2,求f'(x).解:(1)y=f(x+x)f(x)=(x+x)2x2(2)(3)例2.设y=f(x)=x2,求f'(x).12函数y=f(x)在x0处的导数f'(x0)就是曲线y=f(x)在点M(x0,f(x0)处切线的斜率,即k=f'(x0).法线方程为一般,若f'(x0)存在,则y=f(x)在点M(x0,f(x0)处切线方程为三、导数的几何意义函数y=f(x)在x0处的导数f'(x0)就是曲13如图特别,(i)当f'(x0)=0时,即k=0.从而切线平行于x轴.因此,法线垂直于x轴.切线方程:y=f(x0).法线方程:x=x0.y=f(x)0xyMf(x0)x0如图特别,(i)当f'(x0)=0时,即k=0.从而14(2)当f'(x0)=(不存在).即k=tg=.故从而切线垂直于x轴,而法线平行于x轴.切线方程:x=x0.法线方程:y=f(x0).(2)当f'(x0)=(不存在).即k=tg15如图,单位圆在(1,0)处切线方程:x=1.法线方程:y=0.0xy1–1如图,单位圆在(1,0)处切线方程:x=1.法线方16例3.求曲线y=在处的切线方程.解:把
代入,得到y0=4.又因为f‘(x0)=2x0=4,故直接用公式yf(x0)=f’(x0)(xx0)即可得到:.例3.求曲线y=在处的切线方程.17
作业与思考
复习思考题P494
作业题P49:3,
5(1)(2)(4)
(6)(7)(10).
作业与思考
复习思考题P494
作业18
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布]86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯]88.每个意念都是一场祈祷。――[詹姆士·雷德非]89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森]90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯]92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯]93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金]95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班]96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格]98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根]99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特]100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹]101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰]102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华]103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗]104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭]105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基]106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克]107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼]108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿]109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基]110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆]111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯]112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯]113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯]114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。――[阿萨·赫尔帕斯爵士]115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂]117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯]118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默]119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀]120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯]121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯]122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑]123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔]124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多]125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼]127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron]128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温]129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰·鲁斯金]导数的概念优秀课件192.1导数的概念导数的概念优秀课件20大纲要求(1)了解导数、微分的几何意义;隐函数的求导方法;二阶导数;
(3)掌握导数的运算法则;复合函数的求导法则;导数的基本公式;洛必达法则;
(2)理解导数、微分、极值、最值的概念;
(4)会求未定式的极限;会求函数的极值与最大(小)值;会判断函数的单调性;大纲要求(1)了解导数、微分的几何意义;隐函数的求导方法;二21
微分学是微积分的重要组成部分,它的基本概念是导数与微分,而求导数是微分学中的基本运算.在本章中,我们主要讨论导数与微分的概念、它们的计算方法及其应用.曲线的切线的斜率、运动物体在某时刻的速度,其实质是对应函数中函数相对于自变量的变化率,即导数.以下介绍导数的定义.微分学是微积分的重要组成部分,它的基本概念是导数与微22定义:设y=f(x)在x0的某邻域U(x0)内有定义.如果当x0时,的极限存在,则称这个极限值为f(x)在x0处的导数,记作f'(x0),即一、导数的定义定义:设y=f(x)在x0的某邻域U(x0)内有定义.23存在,则称f(x)在x0可导(或称f(x)在x0
的导数存在).否则,称f(x)在x0不可导(或称f(x)在x0的导数不存在).特别注1.若存在,则称f(x)在x0可导(或称f(x)在x0的导24若记x=x0+x,当x0时,xx0,特别,取x0=0,且若f(0)=0,有注2.导数定义还有其他等价形式,若记x=x0+x,当x0时,xx0,特别,取25注3.由于称为f(x)在x0的右导数.称为f(x)在x0的左导数.定理:
f(x)在x0可导f(x)在x0的左,右导数存在且相等.注3.由于称为f(x)在x0的右导数.称为f(x)在26注4.若y=f(x)在(a,b)内每点可导,则称f(x)在(a,b)内可导.称为y=f(x)的导函数.此时,x(a,b)都有唯一确定的值f'(x)与之对应,所以导数是x的函数.注4.若y=f(x)在(a,b)内每点可导,则称27按定义,f'(x)就是x所对应的导数值,这个式子就是导函数的表达式.而f'(x0)就是f'(x)在x=x0处的函数值,即另外,求按定义,f'(x)就是x所对应的导数值,这个式子就是导28用定义求导数一般可分三步进行.设y=f(x)在点x处可导(1)求y=f(x+x)f(x)(2)求比值(3)求极限二、求导举例用定义求导数一般可分三步进行.设y=f(x)在点x处可29例1.求y=C(常数)的导数.解:(1)y=f(x+x)f(x)=CC=0(2)(3)故(C)'=0,即常数的导数为0.例1.求y=C(常数)的导数.解:(1)y=30例2.设y=f(x)=x2,求f'(x).解:(1)y=f(x+x)f(x)=(x+x)2x2(2)(3)例2.设y=f(x)=x2,求f'(x).31函数y=f(x)在x0处的导数f'(x0)就是曲线y=f(x)在点M(x0,f(x0)处切线的斜率,即k=f'(x0).法线方程为一般,若f'(x0)存在,则y=f(x)在点M(x0,f(x0)处切线方程为三、导数的几何意义函数y=f(x)在x0处的导数f'(x0)就是曲32如图特别,(i)当f'(x0)=0时,即k=0.从而切线平行于x轴.因此,法线垂直于x轴.切线方程:y=f(x0).法线方程:x=x0.y=f(x)0xyMf(x0)x0如图特别,(i)当f'(x0)=0时,即k=0.从而33(2)当f'(x0)=(不存在).即k=tg=.故从而切线垂直于x轴,而法线平行于x轴.切线方程:x=x0.法线方程:y=f(x0).(2)当f'(x0)=(不存在).即k=tg34如图,单位圆在(1,0)处切线方程:x=1.法线方程:y=0.0xy1–1如图,单位圆在(1,0)处切线方程:x=1.法线方35例3.求曲线y=在处的切线方程.解:把
代入,得到y0=4.又因为f‘(x0)=2x0=4,故直接用公式yf(x0)=f’(x0)(xx0)即可得到:.例3.求曲线y=在处的切线方程.36
作业与思考
复习思考题P494
作业题P49:3,
5(1)(2)(4)
(6)(7)(10).
作业与思考
复习思考题P494
作业37
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布]86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯]88.每个意念都是一场祈祷。――[詹姆士·雷德非]89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森]90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯]92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯]93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金]95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班]96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格]98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根]99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特]100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹]101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰]102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华]103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗]104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭]105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基]106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克]107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼]108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿]109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基]110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆]111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯]112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯]113.人生的目的有二:先是获得你想要的;然后是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社工六一活动方案
- 故都的秋诗意探索:初中语文课堂延伸阅读教案
- 《生物学基础:青少年健康饮食教案》
- 童话森林的奇遇童话作文(7篇)
- 公交服务标兵活动方案
- 公交驾驶员家访活动方案
- 我们一起追逐梦想作文800字15篇
- 公会春游活动方案
- 公共机构实践活动方案
- 母亲的针线盒承载着岁月的物品写物14篇
- 天津市公安局为留置看护总队招聘警务辅助人员考试真题2024
- DB13-T 5266-2020 基于岩体基本质量BQ分级法的公路隧道围岩级别快速判定技术要求
- 《人工智能基础与应用》课件-实训任务18 构建智能体
- 人工智能笔试题及答案
- 2025猪蓝耳病防控及净化指南(第三版)
- 【课件】Unit+8+Section+B+(1a~2b)课件人教版(2024)初中英语七年级下册
- 红木文化知到智慧树期末考试答案题库2025年广西大学
- 山西省临汾市侯马市部分学校2025年中考二模化学试题(原卷版+解析版)
- 2025年山西云时代技术有限公司校园招聘160人笔试参考题库附带答案详解
- 海洋牧场建设项目可行性研究报告
- 香港专才移民合同协议
评论
0/150
提交评论