(浙江专用)2020高考数学立体几何第1讲空间几何体教案_第1页
(浙江专用)2020高考数学立体几何第1讲空间几何体教案_第2页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲空间几何体空间几何体与三视图[核心提炼]1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先由俯视图确定底面,再利用正视图与侧视图确定几何体.[典型例题]例I(1)(2019•温州瑞安七中高考模拟)下列结论正确的是()各个面都是三角形的几何体是三棱锥以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥圆锥的顶点与底面圆周上的任意一点的连线都是母线(2)(2019•杭州市五校联考)一个四面体的顶点在空间直角坐标系0xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()【解析】(1)A.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,故A错误;B.如图(2)(3)所示,若AABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥,故B错误;C.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由过中心和顶点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C错误;D.根据圆锥母线的定义知,故D正确.故选D.(2)

因为一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是以正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为A.【答案】(1)D(2)A名师点评判断与几何体结构特征有关问题的技巧把握几何体的结构特征,熟悉空间几何体性质,能够根据条件构建几何模型,从而判断命题的真假,有时也可通过反例对结构特征进行辨析.已知几何体识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面的实虚.[对点训练](2019•福州市综合质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是()A.2B.3C.4D.5A.2B.3C.4D.5解析:选C.由二视图知,该几何体是如图所示的四棱锥PABCD,易知四棱锥PABCD的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4.图①是棱长为1的正方体ABCDA1B1C1D】截去三棱锥兔AB』】后得到的几何体,将其绕着棱DD1所在的直线逆时针旋转45°,得到如图②所示的几何体,该几何体的正视图为()解析:选B.由题意可知,该几何体的正视图是长方形,底面对角线DB在正视图中的长为-./2,棱%在正视图中为虚线,D1A,B1A在正视图中为实线,故该几何体的正视图为B.空间几何体的表面积与体积[核心提炼]1.柱体、锥体、台体的侧面积公式(1)S=ch(c为底面周长,h为高);柱侧(2)S锥侧=jchz(c为底面周长,h‘为斜高);锥侧2(3)S台侧=2(c+c')h'C,c分别为上下底面的周长:川为斜高).台侧22.柱体、锥体、台体的体积公式(1)V=Sh(S为底面面积,h为高);柱体(2)V锥体=*Sh(S为底面面积,h为高);(3)V台=3(S+“J肘+S')h(S,S‘分别为上下底面面积,h为高)(不要求记忆).[典型例题]例2(1)(2019•高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幕势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()

A.158B.162C.182D.324(2)(2019•浙江高校招生选考试题)如图(1),把棱长为1的正方体沿平面ABR和平面Apq截去部分后,得到如图(2)所示几何体,则该几何体的体积为()317B・24A.158B.162C.182D.324(2)(2019•浙江高校招生选考试题)如图(1),把棱长为1的正方体沿平面ABR和平面Apq截去部分后,得到如图(2)所示几何体,则该几何体的体积为()317B・242C-31D-2cm3,表面积为cm2cm3,表面积为cm2.【解析】⑴由三视图可知,该几何体是一个直五棱柱,所以其体积V=^X(4X3+2X3+6X6)X6=162.故选B.(2)把棱长为1的正方体沿平面AB1D1和平面A1BC1截去部分后,得到几何体的体积:V=VABCDABCD-VAABD-VBABC+VNABM111111111111=1X1X1-3XQX1X1)X1-3XQX1X1)X1+iX(1X2lX2l}Xi=2i.

44由已知三视图得到几何体是一个底面直角边分别为3,4的直角三角形,高为5的三棱柱,割去一个底面与三棱柱底面相同,高为3的三棱锥,所以该几何体的体积为:2x3X4X5-1x1x3X4X3=24cm3;表面积为:1x(2+5)X4+2x(2+5)X3+2-X3X4+5X5^43X52=121+25j3cm2.答案】(1)B(2)B(3)242+4"求解几何体的表面积及体积的技巧求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在•求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.n根据几何体的三视图求其表面积与体积的三个步骤第一步:根据给出的三视图判断该几何体的形状.n第二步:第三步:由三视图中的大小标示确定该几何体的各个度量.套用相应的面积公式与体积公式计算求解.[对点训练]1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()n~2十3D.琴+D.琴+3丁+1解析:选A.由几何体的三视图可得,该几何体是由半个圆锥和一个三棱锥组成的,故该几+1,故选A.何体的体积+1,故选A.2.(2019•浙江名校协作体高三联考)某几何体的三视图如图所示,且该几何体的体积是{3CM3,则正视图中的X的值是cm,该几何体的表面积是CM2.解析:由三视图可知,该几何体是底面为直角梯形的四棱锥,其直观图如图所示,由棱锥的体积公式得,解析:由三视图可知,该几何体是底面为直角梯形的四棱锥,其直观图如图所示,由棱锥的体积公式得,|x|x(1+2)Xrj3x=p3X=2,侧面ADS,CDS,ABS为直角三角形,侧面BCS是以BC为底的等腰三角形,所以该几何体的表面积为S=2[(1+2)X迈+2X2+込X2+1xV?+2X\;刁=^3+3\7+4答案:2答案:2多面体与球的切接问题[核心提炼]与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.[典型例题]例3(1)(2019•浙江高考冲刺卷)已知一个棱长为4的正方体,过正方体中两条互为异面直线的棱的中点作直线,则该直线被正方体的外接球球面截在球内的线段长是()A.2冷石B.2知C.6D.4\/2

(2)已知三棱锥SABC的所有顶点都在球0的球面上,SC是球0的直径.若平面SCA丄平(2,2,2),M(4,0,2),N(0,2,4),MN的中点(2,1,3),球心到MN的距离为远,所以该直线被正方体的外接球球面截在球内的线段长是2\:'12-2=2価故选B.面SCB,SA面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球0的表面积为.【解析】(1)如图所示,球的半径为2(2)设球0的半径为R,因为SC为球0的直径,所以点0为SC的中点,连接AO,OB,因为SA=AC,SB=BC,所以A0丄SC,B0丄SC,因为平面SCA丄平面SCB,平面SCAn平面SCB=SC,所以A0丄平面SCB,所以VsABC=Vasbc=3xS/XA0=3x(2xSCx0B)xA0,即9=jxgx2RxR)XR,解得R=3,所以球0的表面积为S=4nR2=4nX32=36n.【答案】(1)B(2)36n多面体与球接、切问题的求解策略涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,则4R2=a2+b2+c2求解.[对点训练](2019•嘉兴一模)如图,这是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为()A.20nB.8nC.9nD.19n

"I"解析:选D.如图,该几何体为三棱锥ABCD,设三棱锥外接球的球心导,叩=为0图为直角三角形,则该几何体外接球的表面积为()A.20nB.8nC.9nD.19n

"I"解析:选D.如图,该几何体为三棱锥ABCD,设三棱锥外接球的球心导,叩=为0,0],02分别为△BCD,AABD的外心,依题意得,00厂1cd=25,所以球的半径R=',001+01D2=n,所以该几何体外接球■的表面积S=4nR2=19n(2019•金华十校联考)在正三棱锥SABC中,M是SC的中点,且AM丄SB,底面边长AB=2电,则正三棱锥SABC的体积为,其外接球的表面积为解析:取AC中点D,则SD丄AC,DB丄AC,又因为SDnBD=D,所以AC丄平面SDB,因为SB平面SBD,所以AC丄SB,又因为AM丄SB,AMnAC=A,所以SB丄平面SAC,所以SA丄SB,SC丄SB,根据对称性可知SA丄SC,从而可知SA,SB,SC两两垂直,将其补为立方体,其棱长为2,114所以VSABC=SCasb=3X2x2x2X2=3,其外接球即为立方体的外接球,半径r=¥x2=\:3,表面积S=4nX3=12n.4答案:312n专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设人片是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA]为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.1216C.12解析:选D.如图,以AA]为底面矩形一边的四边形有AA£C、AA^B、AARD、AA£E这4个,每一个面都有4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCDA1B1C1D1中,E为棱BB』勺中点(如图),用过点A,E,q的平面截去该正方体的上半部分,则剩余几何体的正视图为()半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm332A.8cm332C.—cm34.(2019•台州模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三B.12cm340D.§cm3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面

是棱长为2cm的正方体,体积V]=2X2X2=8(cm3);上面是底面边长为2cm,高为2cm的正

1832四棱锥,体积V2=3X2X2X2=3(cm3),所以该几何体的体积V=V]+V2=~3(cm3).C.5逸D.2冷!5解析:选C.由正视图、侧视图、俯视图的形状可判断该几何体为三棱锥,形状如图,其中SC丄平面ABC,AC丄AB,所以最长的棱长为SB=5迈.

5.(2019•金华十校联考)某几何体的三视图如图所示,则该几何体的体积是()A.B.8nC.17nD.9n15n5.(2019•金华十校联考)某几何体的三视图如图所示,则该几何体的体积是()A.B.8nC.17nD.9n"I-解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为nX12X8=8n,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为12占,圆柱的底面直径与母线长相等,则圆柱的侧面积为()解析:选C.设圆柱的底面半径为R,则三棱柱的底面边长为/3r,由匚3(\/3r)2・2R解析:选C.设圆柱的底面半径为R,则三棱柱的底面边长为/3r,由匚3(\/3r)2・2R=12占,得R=2,S=2nR•2R=16n.故选C.圆柱侧7.(2019•石家庄市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为()A.48B.54C.64D.60A.48B.54C.64D.60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S=6X3+2x6X4+3,则V的最大值是()A.4nC.6n3,则V的最大值是()A.4nC.6nD.32nI-解析:选B.由题意可得若V最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,

可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底344n279n面相切,此时球的半径R=2,该球的体积最大,V=-nR3=--X--=-—.2max3382(2019•温州八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()a・2止規图剧视图俯挠图D.\''32a・2止規图剧视图俯挠图D.\''32解析:选C•依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a,则斜边长为-;2a,圆锥的底面半径为*a、母线长为a,因此其俯视图中椭圆的长轴长为“』2a、短轴仝,选C.仝,选C.长为a,其离心率e=\1—已知圆柱00]的底面半径为1,高为n,ABCD是圆柱的一个轴截面.动点M从点B出发沿着圆柱的侧面到达点D,其距离最短时在侧面留下的曲线r如图所示.现将轴截面ABCD绕着轴00]逆时针旋转9(0<0<n)后,边B1C1与曲线r相交于点P,设BP的长度为f(9),则y=f(9)的3=23=2图象大致为()解析:选A.将圆柱的侧面沿轴截面ABCD展平,则曲线r是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD绕着轴00]逆时针旋转0(0<0<n)后,边B1C1与曲线r相交于点P,设BP的长度为f(0),则f(e)应当是一次函数的一段,故选a.(2019•浙江省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是;表面积是.解析:根据三视图可得,该几何体是长方体中的四棱锥CBB1D1D,由三视图可得:P-|-1AB=2,BC=2,由三视图可得:P-|-1AB=2,BC=2,BB=4,VCBBDD==X;;X2X2X4=111323SCBBDD=2x2X2+^2X4+1x2X4+jx2X4+|x^/2^/18=16+^/2.答案:1616+^2(2019•宁波市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.解析:由三视图可知:该几何体是由一个半球去掉1后得到的几何体.俯视图314所以该几何体的体积=314所以该几何体的体积=4X2X§XnX1jicm3.表面积=3X1X4nX12+2xnX12+4xnX12=114ncm2.n答案:了n答案:了11n4(2019•河北省“五校联盟”质量检测)已知球0的表面积为25n,长方体的八个顶点都在球O的球面上,则这个长方体的表面积的最大值等于.5解析:设球的半径为R,则4nR2=25n,所以R=^,所以球的直径为2R=5,设长方体的长、宽、咼分别为a、b、c,则长方体的表面积S=2ab+2ac+2bcWa2+b2+a2+c2+b2+c2=2(a2+bz+c2)=50.答案:50(2019•浙江省高三考前质量检测)某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是.俯视图俯视图y解析:分析题意可知,该几何体为如图所示的四棱锥PABCD,CD=:AB=1y,AC=5,CP=\:7,BP=x,所以BP2=BC2+CP2,即X2=25—y2+7,X2+y2=3222xy,则xyW16,当且仅当x=y=4时,等号成立.此时该几何体的体积VB=3x27^4X3X;,7=^'7.答案:3石(2019•杭州市高考数学二模)在正方体ABCDA占CR中,E是AA』勺中点,则异面直线BE与BR所成角的余弦值等于,若正方体棱长为1,则四面体BEBR的体积为解析:取CC中点F,连接D”B”则BE綊所以ZBRF为异面直线BE与BR所成的角.211设正方体棱长为1,则B1D1^2,B1F=D1F^J1+4=£所以cos小叩=齐=圭=112

VBEBD=VDBBE=!s^BBE・AD=1X=1-X1X1X1==1-111131113261116已知棱长均为a的正三棱柱ABCA1B1q的六个顶点都在半径为学的球面上,则a的值解析:设0是球心,D是等边三角形ABC的中心,则0A=华,因为正三棱柱ABCABC6的所有棱长均为a,的所有棱长均为a,所以A1D=23ax|=33a,0D=|,故卩+0应=^3JI3aJ★A721口12a2=l6,艮卩a2=1,得a=1.答案:117.(2019•瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为解析:如图,设球心为0,三棱柱的上、下底面的中心分别为0],02,底面正三角形的边长为a,233则A01=3^^a=3a-由已知得0卩2丄底面,在RtA0A0]中,由勾股定理得12—OO=112—OO=1*3•\;3—a2所以V=¥a2X2X斗亘二逐戸6三棱柱432令f(a)=3a4—a6(0VaV2),则f'(a)=12ai—6a5=—6a3(a2—2),令f(a)=0,解得a=;'2.因为当aw(0,\S)时,f(a)>0;当&丘(边,2)时,f'(a)V0,所以函数f(a)在(0,迈)上单调递增,在d上单调递减.所以f(a)在a='2处取得极大值.因为函数f(a)在区间(0,2)上有唯一的极值点,所以&=迈也是最大值点.所以(V棱柱)max棱柱nx\'3X4—8答案:118.如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论