版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个2.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.43.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()……-3-2-101…………-17-17-15-11-5……A. B. C. D.4.下列各式与是同类二次根式的是()A. B. C. D.5.的相反数是()A. B. C. D.6.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°7.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.328.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数49425172232081669833329根据列表,可以估计出m的值是()A.8 B.16 C.24 D.329.已知关于的一元二次方程有一个根为,则另一个根为()A. B. C. D.10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1-x)=121 C.100(1+x)2=121 D.100(1-x)2=12111.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.12.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑦个图形中五角星的个数为()A.90 B.94 C.98 D.102二、填空题(每题4分,共24分)13.如图,已知反比例函数的图象经过斜边的中点,与直角边相交于点.若的面积为8,则的值为________.14.小强同学从,,,这四个数中任选一个数,满足不等式的概率是__________.15.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.16.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤元上涨到第三季度的每公斤元,则该超市的排骨价格平均每个季度的增长率为________.17.如图,点在双曲线上,且轴于,若的面积为,则的值为__________.18.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.三、解答题(共78分)19.(8分)已知抛物线与轴交于点.(1)求点的坐标和该抛物线的顶点坐标;(2)若该抛物线与轴交于两点,求的面积;(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).20.(8分)解方程组:21.(8分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)22.(10分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?23.(10分)图中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.线段和的端点均在格点上.(1)在图中画出以为一边的,点在格点上,使的面积为4,且的一个角的正切值是;(2)在图中画出以为顶角的等腰(非直角三角形),点在格点上.请你直接写出的面积.24.(10分)有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.25.(12分)在下列网格图中,每个小正方形的边长均为个单位中,,且三点均在格点上.(1)画出绕顺时针方向旋转后的图形;(2)求点运动路径的长(结果保留).26.解方程:(1);(2)
参考答案一、选择题(每题4分,共48分)1、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.2、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.3、B【分析】当和时,函数值相等,所以对称轴为【详解】解:根据题意得,当和时,函数值相等,所以二次函数图象的对称轴为直线故选B【点睛】本题考查了二次函数的性质.4、A【分析】根据同类二次根式的概念即可求出答案.【详解】解:(A)原式=2,故A与是同类二次根式;(B)原式=2,故B与不是同类二次根式;(C)原式=3,故C与不是同类二次根式;(D)原式=5,故D与不是同类二次根式;故选:A.【点睛】此题主要考查了同类二次根式的定义,正确化简二次根式是解题关键.5、D【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.6、B【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.7、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.8、C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于,由题意得:,解得:m=24,故选:C.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系.9、B【分析】根据一元二次方程的根与系数的关系,x₁+x₂=,把x₁=1代入即可求出.【详解】解:方程有一个根是,另-一个根为,由根与系数关系,即即方程另一根是故选:.【点睛】本题考查了一元二次方程根与系数的关系的应用,还可根据一元二次方程根的定义先求出k的值,再解方程求另一根.10、C【详解】试题分析:对于增长率的问题的基本公式为:增长前的数量×=增长后的数量.由题意,可列方程为:100(1+x)2=121,故答案为:C考点:一元二次方程的应用11、C【解析】试题解析:这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.故选C.考点:1.概率公式;2.中心对称图形.12、C【分析】根据前三个图形可得到第n个图形一共有个五角星,当n=7代入计算即可.【详解】解:第①个图形一共有个五角星;第②个图形一共有个五角星;第③个图形一共有个五角星;……第n个图形一共有个五角星,所以第⑦个图形一共有个五角星.故答案选C.【点睛】本题主要考查规律探索,解题的关键是找准规律.二、填空题(每题4分,共24分)13、【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE和三角形OBC的面积相等,通过面积转化,可求出k的值.【详解】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.的面积与四边形的面积相等,∴四边形DEAB=8,设D点的横坐标为x,纵坐标就为∵D为OB的中点.∴∴四边形DEAB的面积可表示为:∴故答案为:【点睛】本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.14、【分析】找到满足不等式x+1<2的结果数,再根据概率公式计算可得.【详解】解:在0,1,2,3这四个数中,满足不等式x+1<2的中只有0一个数,
所以满足不等式x+1<2的概率是.故答案是:.【点睛】本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.15、60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm1).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.16、【分析】等量关系为:第一季度的猪肉价格×(1+增长率)2=第三季度的猪肉价格【详解】解:设平均每个季度的增长率为g,∵第一季度为每公斤元,第三季度为每公斤元,,解得.∴平均每个季度的增长率.故答案为:.【点睛】本题考查了一元二次方程的应用,是常考查的增长率问题,解题的关键是熟悉有关增长率问题的有关等式.17、【分析】设点A坐标为(x,y),由反比例函数的几何意义得,根据的面积为,即可求出k的值.【详解】解:设点A的坐标为:(x,y),∴,∴,∴,∵反比例函数经过第二、四象限,则,∴故答案为:.【点睛】本题考查了反比例函数的性质,以及反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义进行解题.18、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且三、解答题(共78分)19、(1)(0,5);;(2)15;(3)【分析】(1)令x=0即可得出点C的纵坐标,从而得出点C的坐标;利用配方法将抛物线表达式进行变形即可得出顶点坐标(2)求出A,B两点的坐标,进而求出A与B的距离,由C点坐标可知OC的长,即可得出答案(3)根据平移的规律结合原抛物线表达式即可得出答案.【详解】解:(Ⅰ)当时,,故点,则抛物线的表达式为:,故顶点坐标为:;(2)令,解得:或,则,则;(3)∵∴平移后的抛物线表达式为:【点睛】本题考查的知识点是二次函数图象与几何变换以及二次函数的性质,此题较为基础,易于掌握.20、.【分析】根据加减消元法即可求解.【详解】解:得:.解得:代入①,解得:所以,原方程组的解为【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.21、大树的高约为6.0米.【分析】作CM⊥DB于点M,已知BC的坡度即可得到BM和CM的比值,在Rt△MBC中,利用勾股定理即可求得BM和MC的长度,再在Rt△DCM中利用三角函数求得DM的长,由BD=BM+DM即可求得大树BD的高.【详解】作CM⊥DB于点M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,设BM=5x,则CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM•tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大树的高约为6.0米.【点睛】本题考查了解直角三角形的应用,正确作出辅助线,构造直角三角形模型是解决问题的关键.22、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.23、(1)画图见解析;(2)画图见解析,1.【分析】(1)根据AB的长以及△ABE的面积可得出AB边上的高为2,再直接利用正切的定义借助网格得出E点位置,再画出△ABE即可;
(2)在网格中根据勾股定理可得出DC2=22+42,利用网格找出使CF2=DC2=22+42的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度酒吧软装采购合同范本3篇
- 2025年度农村电商扶贫合作服务合同3篇
- 2025年度农业用电变压器技术创新与专利申请合作合同
- 二零二四年度影视特效策划委托创作合同范文3篇
- 二零二五年度农用拖拉机租赁保证金及解除合同协议
- 2025版现代农业园区土地流转农民房屋买卖合同4篇
- 二零二五年度商业地产项目招商顾问服务合同3篇
- 二零二五年度大数据分析技术与支持服务合同2篇
- 二零二五年度农业科技推广聘用合同
- 2025年度木结构建筑维护木工承包合同范本3篇
- 辽宁省抚顺五十中学2024届中考化学全真模拟试卷含解析
- 2024年湖南汽车工程职业学院单招职业技能测试题库及答案解析
- 2024年中国科学技术大学少年创新班数学试题真题(答案详解)
- 家长心理健康教育知识讲座
- GB/T 292-2023滚动轴承角接触球轴承外形尺寸
- 2024年九省联考高考数学卷试题真题答案详解(精校打印)
- 军人结婚函调报告表
- 民用无人驾驶航空器实名制登记管理规定
- 北京地铁6号线
- 航空油料计量统计员(初级)理论考试复习题库大全-上(单选题汇总)
- 谅解书(标准样本)
评论
0/150
提交评论