2023届成都市青羊区数学九上期末教学质量检测试题含解析_第1页
2023届成都市青羊区数学九上期末教学质量检测试题含解析_第2页
2023届成都市青羊区数学九上期末教学质量检测试题含解析_第3页
2023届成都市青羊区数学九上期末教学质量检测试题含解析_第4页
2023届成都市青羊区数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是()A.②③ B.①③④ C.①②④ D.①②③④2.已知正多边形的边心距与边长的比为,则此正多边形为()A.正三角形 B.正方形 C.正六边形 D.正十二边形3.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.4.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为()A. B. C. D.5.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是()A.①④ B.①② C.②③④ D.②③6.一元二次方程的正根的个数是()A. B. C. D.不确定7.二次函数的图象如图所示,若点A和B在此函数图象上,则与的大小关系是()A. B. C. D.无法确定8.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为9.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A. B.2 C. D.10.如图,二次函数()的图象交轴于点和点,交轴的负半轴于点,且,下列结论:①;②;③;④.其中正确的个数有()A.1 B.2 C.3 D.411.在反比例函数的图象在某象限内,随着的增大而增大,则的取值范围是()A. B. C. D.12.下列四个几何体中,主视图为圆的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,,于,已知,则__________.14.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽为________cm.(结果保留根号)15.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC.若△ABC的面积为1,则△GEC的面积为____________.16.如图,已知菱形的面积为,的长为,则的长为__________.17.已知抛物线的对称轴是y轴,且经过点(1,3)、(2,6),则该抛物线的解析式为_____.18.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是___________°.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由;(2)若AC=6,CD=5,求FG的长.20.(8分)如图,已知抛物线y=﹣x2+x+4,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由.(2)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.21.(8分)如图①,是平行四边形的边上的一点,且,交于点.(1)若,求的长;(2)如图②,若延长和交于点,,能否求出的长?若能,求出的长;若不能,说明理由.22.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=1.23.(10分)先化简,再求值:,其中.24.(10分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形).(1)请画出△ABC关于原点对称的△A1B1C1;(1)请画出△ABC绕点B逆时针旋转90°后的△A1B1C1.25.(12分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?26.为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.2、B【分析】边心距与边长的比为,即边心距等于边长的一半,进而可知半径与边心距的夹角是15度.可求出中心角的度数,从而得到正多边形的边数.【详解】如图,圆A是正多边形的内切圆;∠ACD=∠ABD=90°,AC=AB,CD=BD是边长的一半,当正多边形的边心距与边长的比为,即如图有AB=BD,则△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多边形的中心角是90度,所以它的边数=360÷90=1.故选:B.【点睛】本题利用了正多边形与它的内切圆的关系求解,转化为解直角三角形的计算.3、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.4、B【解析】在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.【详解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,则tan75°=tan∠CAD===2+,故选B【点睛】本题考查了解直角三角形,熟练掌握三角函数是解题的关键.5、D【分析】根据函数的图象中的信息判断即可.【详解】①由图象知小球在空中达到的最大高度是;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:,把代入得,解得,∴函数解析式为,把代入解析式得,,解得:或,∴小球的高度时,或,故④错误;故选D.【点睛】本题考查了二次函数的应用,解此题的关键是正确的理解题意6、B【分析】解法一:根据一元二次方程的解法直接求解判断正根的个数;解法二:先将一元二次方程化为一般式,再根据一元二次方程的根与系数的关系即可判断正根的个数.【详解】解:解法一:化为一般式得,,∵a=1,b=3,c=−4,则,∴方程有两个不相等的实数根,∴,即,,所以一元二次方程的正根的个数是1;解法二:化为一般式得,,,方程有两个不相等的实数根,,则、必为一正一负,所以一元二次方程的正根的个数是1;故选B.【点睛】本题考查了一元二次方程的解法,熟练掌握解一元二次方程的步骤是解题的关键;如果只判断正根或负根的个数,也可灵活运用一元二次方程的根与系数的关系进行判断.7、A【分析】由图象可知抛物线的对称轴为直线,所以设点A关于对称轴对称的点为点C,如图,此时点C坐标为(-4,y1),点B与点C都在对称轴左边,从而利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴为直线,∴设点A关于对称轴对称的点为点C,∴点C坐标为(-4,y1),此时点A、B、C的大体位置如图所示,∵当时,y随着x的增大而减小,,∴.故选:A.【点睛】本题主要考查了二次函数的图象与性质,属于基本题型,熟练掌握二次函数的性质是解题关键.8、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.9、A【解析】试题分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD=,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.考点:(1)垂径定理;(2)勾股定理.10、D【分析】先根据图像,判断出a、b、c的符号,即可判断①;先求出点C的坐标,结合已知条件即可求出点A的坐标,根据根与系数的关系即可判断②;将点A的坐标代入解析式中,即可判断③;将点B的坐标和代入解析式中,即可判断④.【详解】解:由图像可知:抛物线的开口向上∴a>0对称轴在y轴右侧∴a、b异号,即b<0∴a-b>0抛物线与y轴交于负半轴∴c<0∴,①正确;将x=0代入中,解得y=c∴点C的坐标为(0,c)∵∴点A的坐标为(c,0)∵抛物线交轴于点和点∴x=c和x=2是方程的两个根根据根与系数的关系:2c=解得:,故②正确;将点A的坐标代入中,可得:将等式的两边同时除以c,得:,故③正确;将点B的坐标和代入中,可得:解得:,故④正确.故选:D.【点睛】此题考查的是根据二次函数的图像,判断系数或式子的值或符号,掌握二次函数的图像及性质与各项系数的关系是解决此题的关键.11、C【分析】由于反比例函数的图象在某象限内随着的增大而增大,则满足,再解不等式求出的取值范围即可.【详解】∵反比例函数的图象在某象限内,随着的增大而增大∴解得:故选:C.【点睛】本题考查了反比例函数的图象和性质,熟练掌握图象在各象限的变化情况跟系数之间的关系是关键.12、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.二、填空题(每题4分,共24分)13、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【点睛】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.14、()【解析】设它的宽为xcm.由题意得.∴.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约为0.618.15、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可.【详解】解:连接AG并延长交BC于点D,∴D为BC中点∴又∵∴∵G为重心∴∴∴,又∵∴.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、3【分析】根据菱形面积公式求得.【详解】解:【点睛】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.17、y=x1+1【分析】根据抛物线的对称轴是y轴,得到b=0,设出适当的表达式,把点(1,3)、(1,6)代入设出的表达式中,求出a、c的值,即可确定出抛物线的表达式.【详解】∵抛物线的对称轴是y轴,∴设此抛物线的表达式是y=ax1+c,把点(1,3)、(1,6)代入得:,解得:a=1,c=1,则此抛物线的表达式是y=x1+1,故答案为:y=x1+1.【点睛】本题考查代定系数法求函数的解析式,根据抛物线的对称轴是y轴,得到b=0,再设抛物线的表达式是y=ax1+c是解题的关键.18、1【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=1°,故答案为1.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.三、解答题(共78分)19、(1)与相切,证明见详解;(2)【分析】(1)如图,连接OF,DF,根据直角三角形的性质得到CD=BD,由CD为直径,得到DF⊥BC,得到F为BC中点,证明OF∥AB,进而证明GF⊥OF,于是得到结论;(2)根据勾股定理求出BC,BF,根据三角函数sinB的定义即可得到结论.【详解】解:(1)答:与相切.证明:连接OF,DF,∵在Rt△ABC中,∠ACB=90°,D为AB的中点,∴CD=BD=,∵CD为⊙O直径,∴DF⊥BC,∴F为BC中点,∵OC=OD,∴OF∥AB,∵FG⊥AB,∴FG⊥OF,∴为的切线;(2)∵CD为Rt△ABC斜边上中线,∴AB=2CD=10,在Rt△ABC中,∠ACB=90°,∴BC=,∴BF=,∵FG⊥AB,∴sinB=,∴,∴.【点睛】本题考查了直线与圆的位置关系,三角形的中位线,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.20、(1)存在点P,使△PBC的面积最大,最大面积是2;(2)M点的坐标为(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【分析】(1)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,假设存在,设点P的坐标为(x,﹣x2+x+1),过点P作PD//y轴,交直线BC于点D,则点D的坐标为(x,﹣x+1),PD=﹣x2+2x,利用三角形的面积公式即可得出S△PBC关于x的函数关系式,再利用二次函数的性质即可解决最值问题;(2)设点M的坐标为(m,﹣m2+m+1),则点N的坐标为(m,﹣m+1),进而可得出MN=|﹣m2+2m|,结合MN=3即可得出关于m的含绝对值符号的一元二次方程,解之即可得出结论.【详解】解:(1)当x=0时,y=﹣x2+x+1=1,∴点C的坐标为(0,1).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,1)代入y=kx+b,.,解得:,∴直线BC的解析式为y=﹣x+1.假设存在,设点P的坐标为(x,﹣x2+x+1)(0<x<8),过点P作PD//y轴,交直线BC于点D,则点D的坐标为(x,﹣x+1),如图所示.∴PD=﹣x2+x+1﹣(﹣x+1)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣1)2+2.∵﹣1<0,∴当x=1时,△PBC的面积最大,最大面积是2.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是2.(2)设点M的坐标为(m,﹣m2+m+1),则点N的坐标为(m,﹣m+1),∴MN=|﹣m2+m+1﹣(﹣m+1)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,1);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=1﹣2,m1=1+2,∴点M的坐标为(1﹣2,﹣1)或(1+2,﹣﹣1).综上所述:M点的坐标为(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【点睛】本题考查了二次函数的应用,综合性比较强,结合图形掌握二次函数的性质是解题的关键.21、(1);(2)能,【分析】(1)由DE∥BC,可得,由此即可解决问题;

(2)由PB∥DC,可得,可得PA的长.【详解】(1)∵为平行四边形∴,,又∵∴又∵∴,∴.(2)能∵为平行四边形,∴,,∴∴∴【点睛】本题考查了相似三角形的判定与性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、2.【分析】根据分式的运算法则进行计算化简,再将x2=x+2代入即可.【详解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.23、原式=.【分析】先把分式进行化简,得到最简代数式,然后根据特殊角的三角函数值,求出x的值,把x代入计算,即可得到答案.【详解】解:原式;当时,原式.【点睛】本题考查了特殊值的三角函数值,分式的化简求值,以及分式的加减混合运算,解题的关键是熟练掌握运算法则进行运算.24、(1)见解析;(1)见解析【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论