版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=40°,则∠BAD的大小为()A.60º B.30º C.45º D.50º2.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区 B.2区 C.3区 D.4区3.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣14.如图,在平面直角坐标系中,点、、为反比例函数()上不同的三点,连接、、,过点作轴于点,过点、分别作,垂直轴于点、,与相交于点,记四边形、、的面积分别为,、、,则()A. B. C. D.5.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位6.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块7.下列实数:,其中最大的实数是()A.-2020 B. C. D.8.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是()A.(2,0) B.(-3,0) C.(-2,0) D.(3,0)9.如图,双曲线的一个分支为()A.① B.② C.③ D.④10.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.11.如图中几何体的主视图是()A. B. C. D.12.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE∶EB=4∶1,EF⊥AC于点F,连接FB,则tan∠CFB的值等于()A. B. C. D.5二、填空题(每题4分,共24分)13.二次函数y=x2﹣bx+c的图象上有两点A(3,﹣2),B(﹣9,﹣2),则此抛物线的对称轴是直线x=________.14.计算:________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.16.若边长为2的正方形内接于⊙O,则⊙O的半径是___________.17.如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.18.如图,菱形ABCD的三个顶点在二次函数的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为____________.三、解答题(共78分)19.(8分)如图,已知中,,.求的面积.20.(8分)如图,抛物线(a≠0)经过A(-1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.21.(8分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点(不与点B.
C重合),连结AE,并作EF⊥AE,交CD边于点F,连结AF.设BE=x,CF=y.(1)求证:△ABE∽△ECF;(2)当x为何值时,y的值为2;22.(10分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.23.(10分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.24.(10分)如图,在下列(边长为1)的网格中,已知的三个顶点,,在格点上,请分别按不同要求在网格中描出一个点,并写出点的坐标.(1)经过,,三点有一条抛物线,请在图1中描出点,使点落在格点上,同时也落在这条抛物线上;则点的坐标为______;(2)经过,,三点有一个圆,请用无刻度的直尺在图2中画出圆心;则点的坐标为______.25.(12分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.26.某数学兴趣小组根据学习函数的经验,对分段函数的图象与性质进行了探究,请补充完整以下的探究过程.x…-2-101234…y…30-1010-3…(1)填空:a=.b=.(2)①根据上述表格数据补全函数图象;②该函数图象是轴对称图形还是中心对称图形?(3)若直线与该函数图象有三个交点,求t的取值范围.
参考答案一、选择题(每题4分,共48分)1、D【分析】把∠DAB归到三角形中,所以连结BD,利用同弧所对的圆周角相等,求出∠A的度数,AB为直径,由直径所对圆周角为直角,可知∠DAB与∠B互余即可.【详解】连结BD,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.【点睛】本题考查圆周角问题,关键利用同弧所对圆周角转化为三角形的内角,掌握直径所对圆周角为直角,会利用余角定义求角.2、D【分析】如图,连接AA',BB',分别作AA',BB'的中垂线,两直线的交点即为旋转中心,从而便可判断出点C'位置.【详解】如图,连接AA',BB',分别作AA',BB'的中垂线,两直线的交点O即为旋转中心,连接OC,易得旋转角为90°,从而进一步即可判断出点C'位置.在4区.故选:D.【点睛】本题主要考查了图形的旋转,熟练掌握相关方法是解题关键.3、B【解析】分析:首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选B.点睛:此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.4、C【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可得到结论.【详解】解:∵点A、B、C为反比例函数(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,
∴S3=k,S△BOE=S△COF=k,∵S△BOE-SOGF=S△CDF-S△OGF,
∴S1=S2<S3,∴,故选:C.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.5、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6、B【解析】根据事件发生的可能性大小即可判断.【详解】A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B.抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C.抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D.从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.7、C【解析】根据正数大于0,0大于负数,正数大于负数,比较即可;【详解】∵=-2020,=-2020,=2020,=,∴,故选C.【点睛】本题主要考查了实数大小比较,掌握实数大小比较是解题的关键.8、D【分析】求出点(-1,0)关于直线的对称点,对称点的坐标即为图象与轴的另一个交点坐标.【详解】由题意得,另一个交点与交点(-1,0)关于直线对称设另一个交点坐标为(x,0)则有解得另一个交点坐标为(3,0)故答案为:D.【点睛】本题考查了二次函数的对称问题,掌握轴对称图象的性质是解题的关键.9、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.10、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.11、D【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.12、C【解析】根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴=∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==故选C.二、填空题(每题4分,共24分)13、-3【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x=-3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.14、【分析】根据特殊角的三角函数值直接书写即可.【详解】故答案为:.【点睛】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.15、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.16、【分析】连接OB,CO,由题意得∠BOC=90°,OC=OB,在Rt△BOC中,根据勾股定理即可求解.【详解】解:连接OB,OC,如图∵四边形ABCD是正方形且内接于⊙O∴∠BOC=90°,
∴在Rt△BOC中,利用勾股定理得:∵OC=OB,正方形边长=2∴利用勾股定理得:则∴.
∴⊙O的半径是,
故答案为:.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.17、解:∠D=∠B或∠AED=∠C.【分析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE
∴∠DAE=∠BAC
∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.
故答案为∠D=∠B(答案不唯一).18、(2,).【详解】解:由题意可知:抛物线y=ax2-2ax+(a<0)的对称轴是直线x=1,与y轴的交点坐标是(2,),即点B的坐标是(2,)由菱形ABCD的三个顶点在二次函数y=ax2-2ax+(a<0)的图象上,点A,B分别是抛物线的顶点和抛物线与y轴的交点,∴点B与点D关于直线x=1对称,得到点D的坐标为(2,).故答案为(2,).三、解答题(共78分)19、【分析】过点A作AD⊥BC,垂足为点D,构造直角三角形,利用三角函数值分别求出AD、BD、CD的值即可求三角形面积.【详解】解:过点A作AD⊥BC,垂足为点D,在Rt△ADB中,∵,∴=∵,∴在Rt△ADC中,∵,∴,∴AD=DC=4∴【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.20、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当△ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tan∠MDN=2或,建立关于点N的横坐标的方程,求出即可.试题解析:(1)由于抛物线(a≠0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入(a≠0),可得:;解方程组可得:,故抛物线的解析式为:,∵=,所以D的坐标为(,).(2)如图1,设P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B两点关于对称轴对称,连接CB交对称轴于点P,则△ACP的周长最小.设直线BC为y=kx+b,则:,解得:,∴直线BC为:.当x=时,=,∴P(,);(3)存在.如图2,过点作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,设点N(m,),∴FN=|m﹣|,FD=||=||,∵Rt△DNM与Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①当∠MDN=∠OBC时,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②当∠MDN=∠OCB时,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合条件的点N的坐标(,)或(,)或(,)或(,).考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题.21、(1)见解析;(2)x的值为2或1时,y的值为2【分析】(1)①先判断出∠BAE=∠CEF,即可得出结论;(2)利用的相似三角形得出比例式即可建立x,y的关系式,代入即可;【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y,EC=8−x,∴.∴y=−x2+x.∵y=2,−x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值为2或1.【点睛】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.22、(1),B点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)①用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;②由题意可知OB=OA,故当△BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值.【详解】(1)∵抛物线对称轴是直线x=1,∴﹣=1,解得b=2,∵抛物线过A(0,3),∴c=3,∴抛物线解析式为,令y=0可得,解得x=﹣1或x=3,∴B点坐标为(3,0);(2)①由题意可知ON=3t,OM=2t,∵P在抛物线上,∴P(2t,),∵四边形OMPN为矩形,∴ON=PM,∴3t=,解得t=1或t=﹣(舍去),∴当t的值为1时,四边形OMPN为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ=,BQ=|2t﹣3|,又由题意可知0<t<1,当OB=QB时,则有|2t﹣3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t﹣3|,解得t=;综上可知当t的值为或时,△BOQ为等腰三角形.23、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐标系描出A、B、C、D四点,观察图形即可得出结论(2)①分别画出直线y=2x+2、y=-x-2、y=-2得出图形为G,从而求出G的面积;②根据P(x,y)为G内(含边界)的一点,求出x、y的范围,从而2x+2y的取值范围;(2)分别画出直线y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所围成的图形M,再根据抛物线的对称轴x=﹣m,和抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点,从而求出m的取值范围【详解】解:(2)如图所示:这四个点中是x﹣y﹣2≤0的解的点是A、B、D.故答案为:A、B、D;(2)①如图所示:不等式组在坐标系内形成的图形为G,所以G的面积为:×2×2=2.②根据图象得:﹣2≤x≤2,﹣2≤y≤﹣2,∴﹣6≤2x≤2,﹣6≤2y≤﹣2,∴﹣22≤2x+2y≤2.答:2x+2y的取值范围为﹣22≤2x+2y≤2.(2)如图所示为不等式组的解集围成的图形,设为M,抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点时m的取值范围:∵抛物线的对称轴x=﹣m,﹣m≥﹣,或﹣m≤,∴m或m≥﹣.又﹣2≤2m2﹣m﹣2≤2,∴0≤m≤,综上:m的取值范围是0≤m≤【点睛】本题考查了二次函数的综合题,涉及到了一次函数与方程、一次函数与不等式、二次函数与不等式等知识,熟练掌握相关知识是解题的关键24、(1);(2)答案见解析,.【分析】(1)抛物线的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版多元化软件销售协议模板汇编版B版
- 陕西服装工程学院《科技写作》2023-2024学年第一学期期末试卷
- 陕西电子信息职业技术学院《运筹学与系统工程》2023-2024学年第一学期期末试卷
- 山西中医药大学《国际贸易实务实训》2023-2024学年第一学期期末试卷
- 2024年度高空作业塔吊施工安全管理合同3篇
- 2024年校方教师聘用协议:含长期职业发展计划版B版
- 2024年环保设备研发与供应合同
- 2024年服装购销合同:外贸业务中的支付与交货规定
- 2024年标准水暖安装劳务协议样本版B版
- 2024年版中央储备小麦采购与销售合同版
- 山西省晋中市各县区乡镇行政村村庄村名居民村民委员会明细
- 养老机构护理管理制度与规范
- DB31∕T 875-2015 人身损害受伤人员休息期、营养期、护理期评定准则
- 08S305-小型潜水泵选用及安装图集
- 工程监理企业各部门岗位职责
- 取暖器产品1油汀ny221218试验报告
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 雅马哈PSR-37中文说明书
- 一汽大众新员工三级安全教育(入厂级)
- 最新X公司事业部建设规划方案
- 十一学校行动纲要
评论
0/150
提交评论