版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届贵州省铜仁市石阡县中考五模数学测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在测试卷卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设a,b是常数,不等式的解集为,则关于x的不等式的解集是()A. B. C. D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形3.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°4.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是()人数3421分数80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和805.计算的结果等于()A.-5 B.5 C. D.6.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对9.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100° B.110° C.120° D.130°10.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A. B. C. D.11.已知点,为是反比例函数上一点,当时,m的取值范围是()A. B. C. D.12.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:.14.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.15.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________16.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.17.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.18.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:的内切圆.小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D;
点O为圆心,OD长为半径作所以,即为所求作的圆.请回答:该尺规作图的依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?20.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.22.(8分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.23.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?24.(10分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?25.(10分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.26.(12分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣33(1)求抛物线F的解析式;(1)如图1,直线l:y=33x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.27.(12分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【答案解析】
根据不等式的解集为x<即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0【题目详解】解不等式,移项得:∵解集为x<∴,且a<0∴b=-5a>0,解不等式,移项得:bx>a两边同时除以b得:x>,即x>-故选C【答案点睛】此题考查解一元一次不等式,掌握运算法则是解题关键2、C【答案解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A.正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B.平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C.矩形,既是中心对称图形又是轴对称图形,故本选项正确.D.等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.3、A【答案解析】
解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.4、B【答案解析】
根据众数及平均数的定义,即可得出答案.【题目详解】解:这组数据中85出现的次数最多,故众数是85;平均数=(80×3+85×4+90×2+95×1)=85.5.故选:B.【答案点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.5、A【答案解析】
根据有理数的除法法则计算可得.【题目详解】解:15÷(-3)=-(15÷3)=-5,
故选:A.【答案点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.6、D【答案解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【题目详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【答案点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.7、C【答案解析】测试卷分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C8、C【答案解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.9、B【答案解析】
根据同弧所对的圆周角是圆心角度数的一半即可解题.【题目详解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故选B.【答案点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.10、B【答案解析】测试卷分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.11、A【答案解析】
直接把n的值代入求出m的取值范围.【题目详解】解:∵点P(m,n),为是反比例函数y=-图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【答案点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.12、D【答案解析】
根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.【题目详解】解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.故选:D.【答案点睛】本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、.【答案解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.14、-6【答案解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得15、1【答案解析】
设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【题目详解】设这个正多边的外角为x°,由题意得:x+5x=180,解得:x=30,360°÷30°=1.故答案为:1.【答案点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.16、(10,3)【答案解析】
根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【题目详解】∵四边形AOCD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt△CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3).17、直角三角形.【答案解析】
根据题意,画出图形,用垂直平分线的性质解答.【题目详解】点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴∠C是直角.∴这个三角形是直角三角形.【答案点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.18、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【答案解析】
根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【题目详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【答案点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)一共调查了300名学生;(2)36°,补图见解析;(3)估计选择“A:跑步”的学生约有800人.【答案解析】
(1)由跑步的学生数除以占的百分比求出调查学生总数即可;(2)求出跳绳学生占的百分比,乘以360°求出占的圆心角度数,补全条形统计图即可;(3)利用跑步占的百分比,乘以2000即可得到结果.【题目详解】(1)根据题意得:120÷40%=300(名),则一共调查了300名学生;(2)根据题意得:跳绳学生数为300﹣(120+60+90)=30(名),则扇形统计图中“B:跳绳”所对扇形的圆心角的度数为360°×=36°,;(3)根据题意得:2000×40%=800(人),则估计选择“A:跑步”的学生约有800人.【答案点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.20、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【答案解析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【题目详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①当OC与CD是对应边时,∵△DOC∽△PDC,∴,即=,解得DP=,过点P作PG⊥y轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴,即=,解得DP=3,过点P作PG⊥y轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.21、详见解析.【答案解析】测试卷分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.测试卷解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.22、(1)答案见解析;(2)【答案解析】
(1)根据三角形角平分线的定义,即可得到AD;
(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【题目详解】解:(1)如图所示,AD即为所求;
(2)如图,过D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.【答案点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.23、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【答案解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1);(2)80米/分;(3)6分钟【答案解析】
(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【题目详解】(1)根据题意得:
设线段AB的表达式为:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即线段AB的表达式为:y=-20x+320(4≤x≤16),
(2)又线段OA可知:甲的速度为:=60(米/分),
乙的步行速度为:=80(米/分),
答:乙的步行速度为80米/分,
(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
与终点的距离为:2400-960=1440(米),
相遇后,到达终点甲所用的时间为:=24(分),
相遇后,到达终点乙所用的时间为:=18(分),
24-18=6(分),
答:乙比甲早6分钟到达终点.【答案点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.25、(1)a=3,b=-2;(2)m≥8或m≤-2【答案解析】
(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.【题目详解】(1)∵点A在图象上∴∴a=3∴A(3,1)∵点A在y=x+b图象上∴1=3+b∴b=-2∴解析式y=x-2(2)设直线y=x-2与x轴的交点为D∴D(2,0)①当点C在点A的上方如图(1)∵直线y=-x+m与x轴交点为B∴B(m,0)(m>3)∵直线y=-x+m与直线y=x-2相交于点C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若点C在点A下方如图2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2综上所述,m≥8或m≤-2【答案点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.26、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(13,23)、(﹣【答案解析】
(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【题目详解】(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣33∴c=013-∴抛物线F的解析式为y=x1+33(1)将y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴点A的坐标为(﹣233,23∵点A′是点A关于原点O的对称点,∴点A′的坐标为(233,﹣①△AA′B为等边三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南林业大学《传热传质学》2022-2023学年第一学期期末试卷
- 西京学院《汉文字学》2022-2023学年第一学期期末试卷
- 2024年01月11080工程数学(本)期末试题答案
- 西昌学院《中国少数民族文学史》2022-2023学年第一学期期末试卷
- 西北大学《计算物理》2022-2023学年第一学期期末试卷
- 《代谢调节盖》课件
- 《健康产品培训》课件
- ifrs17保险合同负债的计量模型
- 供稿合同模板
- 《施工合同司法解释(一)》第四十三条
- 24秋国开《西方行政学说》形考任务1答案(第2套)
- 交通事故纠纷协议书模板
- 4.20 三国两晋南北朝时期的科技与文化 课件 2024-2025学年统编版七年级历史上册
- TBIA 22-2024 骨科疾病诊疗数据集-颈椎退行性疾病
- 2024至2030年中国生物发酵行业竞争格局分析及市场前景趋势报告
- DB14-T 2223-2024 山西省旅游资源分类、调查与评价
- 期中模拟考试卷02-2024-2025学年上学期高二思想政治课《哲学与人生》解析卷
- 风电场全过程咨询项目管理规划方案
- 2024统编版九年级历史下册全册知识点
- 人教版九年级化学上册《化石能源的合理利用》能源的合理利用与开发课件
- 2023六年级英语上册 Unit 3 Care for the earth说课稿 陕旅版(三起)
评论
0/150
提交评论