信号处理的智能方法分析课件_第1页
信号处理的智能方法分析课件_第2页
信号处理的智能方法分析课件_第3页
信号处理的智能方法分析课件_第4页
信号处理的智能方法分析课件_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

信号处理的

智能方法需求信号处理的

智能方法需求1内容问题的提出1人脑的信息处理2现有智能方法及其局限性3解决途径4内容问题的提出1人脑的信息处理2现有智能方法及其局限性21问题的提出在信息处理中,人脑具有明显的优越性,如:人脸识别信号功率谱估计信号带宽的分析等

1问题的提出在信息处理中,人脑具有明显的优越性,如:31问题的提出信息获取通信信息处理1问题的提出信息获取通信信息处理41问题的提出香农的《信息论》针对信息的通信过程,反映通信的基本规律对信息处理过程仅有某些影响没有覆盖以认知为目的的信息处理活动1问题的提出香农的《信息论》51问题的提出寻找信息处理的基本规律思路:“识物”“物”凝聚了客观世界的极多信息,与“物”相关联的某些信息是认知活动所追寻索的目标,“识物”就是认知的基础。1问题的提出寻找信息处理的基本规律62人脑信息处理两个信息处理中心2.1两个中心的处理机制2.2人脑信息处理的特点2.32人脑信息处理两个信息处理中心2.1两个中心的处理机制2.72.1人脑信息处理的特点大脑的思维过程实质上是信息处理过程,复杂而多样,难给出精确的描述分布存储与冗余性并行处理信息处理与存储合一可塑性与自组织性鲁棒性2.1人脑信息处理的特点大脑的思维过程实质上是信息处理过程82.2两个信息处理中心快速脑非逻辑脑图像脑右脑人脑慢速脑逻辑脑学术脑左脑2.2两个信息处理中心快速脑人脑慢速脑92.2两个信息处理中心快速脑

非凡的学习能力过目不忘的记忆能力超级(快速)计算能力拥有本能和直觉的反应2.2两个信息处理中心快速脑102.2两个信息处理中心快速脑采用潜意识和直觉的方式学习和记忆,信息存储量极大,可以不假思索地掌握知识;主要用图像的方式来处理问题;非逻辑处理。2.2两个信息处理中心快速脑采用潜意识和直觉的方式学习和记112.2两个信息处理中心慢速脑

记忆容量和学习速度有限用符号和逻辑的方式处理问题记忆效率低下意义:依靠它,人类才具有分析和逻辑能力,知识才可以传递和学习!人类的文明才可以发展!2.2两个信息处理中心慢速脑122.2两个信息处理中心左脑和右脑的称谓不完全准确左脑:低速的逻辑脑(意识脑)右脑:高速的图像脑(潜意识脑)2.2两个信息处理中心132.2两个中心的处理机制成年人的大脑,习惯了主要使用逻辑脑。所谓思考的功能,一般都是由低速脑来完成!具有良好的逻辑记忆功能,负责逻辑判断和推理,具有短时记忆,总体记忆容量比较小。经常出现的信息,逻辑脑就会把它转移到图像脑,深层记忆中保存下来!2.2两个中心的处理机制成年人的大脑,习惯了主要使用逻辑脑142.2两个中心的处理机制逻辑脑主宰人的思维,人们最重视的就是这个大脑!长期以来,以为人只有这个大脑存在,它代表理性和思维。逻辑脑容易遗忘!2.2两个中心的处理机制逻辑脑主宰人的思维,人们最重视的152.3两个中心的处理机制对非逻辑脑的研究始于弗洛伊德(SigmundFreud)的潜意识理论,目前已经是一门很重要的学科!研究表明:信息量特别大的图像,如运动,音乐和快速的信息处理,必然是由高速脑、也就是非逻辑脑来完成的!2.3两个中心的处理机制对非逻辑脑的研究始于弗洛伊德(Si162.3两个中心的处理机制高速脑具有庞大而快速的记忆能力,可以过目不忘,在不经意中完成学习和记忆!非逻辑脑很难通过有意识的控制来学习知识;大多数人都不善于使用自己的快速脑;有些人经过训练,可以用高速脑来完成普通人用低速脑做的事情,感觉他们就是天才。“不假思索”2.3两个中心的处理机制高速脑具有庞大而快速的记忆能力,可173现有智能方法及其局限性人工智能(ArtificialIntelligence,AI),是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。基于人的慢速脑研究;思维观点:AI不仅限于逻辑思维,还应考虑形象思维、灵感思维,才能促进AI的突破性的发展。3现有智能方法及其局限性人工智能(ArtificialI183现有智能方法及其局限性人工智能神经网络小波分析模式识别模糊聚类专家系统遗传算法3现有智能方法及其局限性人工智能神经网络小波分析模式识别模193.1神经网络的方法人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应非线性动态系统。人工神经元网络是生物神经网络的一种模拟和近似,它从结构、实现机理和功能上模拟生物神经网络。3.1神经网络的方法人工神经元网络是由大量神经元通过极其丰203.1神经网络的方法神经网络优点(1)强的鲁棒性和容错性,并行处理方法;(2)自学习、自组织、自适应性,可以处理不确定或不知道的系统;(3)充分逼近任意复杂的非线性关系;(4)强的信息综合能力,能同时处理定量和定性的信息,协调多种输入信息关系。3.1神经网络的方法神经网络优点213.1神经网络的方法神经网络缺点(1)难于精确分析神经网络的各项性能指标;(2)不宜用来求解必须得到正确答案的问题:自发的集体行为;(3)不宜用来求解用数字计算机解决得很好问题;(4)体系结构的通用性差。3.1神经网络的方法神经网络缺点223.1神经网络的方法神经网络主要应用:如自动控制领域、处理组合优化问题、模式识别、图像处理、传感器信号处理、机器人控制、信号处理、数据挖掘等。神经网络与其他方法相结合,取长补短:如神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。3.1神经网络的方法神经网络主要应用:如自动控制领域、处理233.2遗传算法遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。3.2遗传算法遗传算法(GeneticAlgorithm243.2遗传算法遗传算法的特点:

(1)从问题解的串集开始搜索,覆盖面大,利于全局择优;(2)同时处理群体中的多个个体,减少了陷入局部最优解的风险,易于实现并行化;

(3)采用概率的变迁规则来指导它的搜索方向;

(4)具有自组织、自适应和自学习性。

3.2遗传算法遗传算法的特点:253.3小波分析小波分析:数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。小波分析是对Fourier分析方法的突破,不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和高频信号在时域都有很好的分辨率,从而可以聚集到对象的任意细节。3.3小波分析小波分析:数学显微镜,具有放大、缩小和平移功263.3小波分析小波分析两大优点:(1)时频联合分析方法,自适应地调节时频窗口,同时具有时频域局部化的性能;(2)小波函数可作为许多经典函数空间的无条件基,通过快速离散小波变换能够实现这些空间中的函数逼近。3.3小波分析小波分析两大优点:273.4局限性本质而言,AI是对人的思维过程的模拟,人的思维模拟可以从两条路进行:1.结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;2.功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。3.4局限性本质而言,AI是对人的思维过程的模拟,人的思283.4局限性(1)理论基点:思维即计算(2)理论框架:演绎逻辑背景下的形式系统(3)手

段:形式化方法(4)执行环境:冯

诺依曼计算机系统3.4局限性(1)理论基点:思维即计算293.4局限性(1)思维即计算:发展过程图灵机:能模拟人类所能进行的任何计算过程主要内涵是抽象思维,而人的思维有多种方式,即使是抽象思维,不能完全归结为计算。数学中解题思想是如何产生的?这一思维过程能否通过计算实现?人脸识别中,特征信息的选取3.4局限性(1)思维即计算:发展过程303.4局限性(2)演绎逻辑背景下的形式系统形式系统形式系统的语义单一性记忆的事物可能不止一个含义,一个意义人的思维有极大的灵活性,能去伪存真、由表及里、广泛联想仅仅依靠形式系统这一理论框架是不够的3.4局限性(2)演绎逻辑背景下的形式系统313.4局限性(3)形式化方法形式化方法要求首先将待处理的问题形式化,而这种转变本身有要求形式化,这就是一种无穷递归。人在处理问题时,具有学习、适应的能力,不完全是形式化的。3.4局限性(3)形式化方法323.4局限性(4)冯

诺依曼计算机系统只有问题是可形式化的、可计算的,并且具有求解这一个计算问题的具体算法,计算机才有可能代替人去执行。还存在着计算复杂性问题。3.4局限性(4)冯诺依曼计算机系统333.4局限性与人类思维相比,“机器思维”1.AI系无意识的机械的物理的过程,人类智能主要是生理和心理的过程;2.AI没有社会性;3.AI没有人类的意识所特有的能动性;4.人脑的思维在前,电脑的功能在后。3.4局限性与人类思维相比,“机器思维”344解决途径1.继承及改造2.研究非形式系统3.集成与互补4.向物理科学、生物科学寻求新的计算或信息处理的原理。4解决途径1.继承及改造354解决途径1.继承及改造形式系统、形式化方法是从人的抽象思维中抽取的一种思维模型,是极为有效的工具,赋予系统以学习、创造的功能将形象信息引入形式系统引入更多的开放性系统的特征这种系统将更接近人的思维。4解决途径1.继承及改造364解决途径2.研究非形式系统在继续研究、改造现有的形式系统的同时,注意研究非形式系统的规律,对AI的发展将具有重大的理论意义。未来的智能系统的理论基底很可能是改造过的新形式系统同非形式系统的结合体。4解决途径2.研究非形式系统374解决途径3.集成与互补思维层面:将逻辑(抽象)思维与形象(直感)思维结合起来,理论模型层面:将形式系统与非形式系统结合技术层面:将多种技术手段方法综合起来,就有希望构造出新一代的更高级的智能系统。4解决途径3.集成与互补384解决途径4.向物理科学、生物科学寻求新的计算或信息处理的原理。生命科学:特征信息的表征与提取研究人高速脑工作机制开发人的高速脑学习4解决途径4.向物理科学、生物科学寻求新的计算或信息处理39信号处理的智能方法分析课件40信号处理的

智能方法需求信号处理的

智能方法需求41内容问题的提出1人脑的信息处理2现有智能方法及其局限性3解决途径4内容问题的提出1人脑的信息处理2现有智能方法及其局限性421问题的提出在信息处理中,人脑具有明显的优越性,如:人脸识别信号功率谱估计信号带宽的分析等

1问题的提出在信息处理中,人脑具有明显的优越性,如:431问题的提出信息获取通信信息处理1问题的提出信息获取通信信息处理441问题的提出香农的《信息论》针对信息的通信过程,反映通信的基本规律对信息处理过程仅有某些影响没有覆盖以认知为目的的信息处理活动1问题的提出香农的《信息论》451问题的提出寻找信息处理的基本规律思路:“识物”“物”凝聚了客观世界的极多信息,与“物”相关联的某些信息是认知活动所追寻索的目标,“识物”就是认知的基础。1问题的提出寻找信息处理的基本规律462人脑信息处理两个信息处理中心2.1两个中心的处理机制2.2人脑信息处理的特点2.32人脑信息处理两个信息处理中心2.1两个中心的处理机制2.472.1人脑信息处理的特点大脑的思维过程实质上是信息处理过程,复杂而多样,难给出精确的描述分布存储与冗余性并行处理信息处理与存储合一可塑性与自组织性鲁棒性2.1人脑信息处理的特点大脑的思维过程实质上是信息处理过程482.2两个信息处理中心快速脑非逻辑脑图像脑右脑人脑慢速脑逻辑脑学术脑左脑2.2两个信息处理中心快速脑人脑慢速脑492.2两个信息处理中心快速脑

非凡的学习能力过目不忘的记忆能力超级(快速)计算能力拥有本能和直觉的反应2.2两个信息处理中心快速脑502.2两个信息处理中心快速脑采用潜意识和直觉的方式学习和记忆,信息存储量极大,可以不假思索地掌握知识;主要用图像的方式来处理问题;非逻辑处理。2.2两个信息处理中心快速脑采用潜意识和直觉的方式学习和记512.2两个信息处理中心慢速脑

记忆容量和学习速度有限用符号和逻辑的方式处理问题记忆效率低下意义:依靠它,人类才具有分析和逻辑能力,知识才可以传递和学习!人类的文明才可以发展!2.2两个信息处理中心慢速脑522.2两个信息处理中心左脑和右脑的称谓不完全准确左脑:低速的逻辑脑(意识脑)右脑:高速的图像脑(潜意识脑)2.2两个信息处理中心532.2两个中心的处理机制成年人的大脑,习惯了主要使用逻辑脑。所谓思考的功能,一般都是由低速脑来完成!具有良好的逻辑记忆功能,负责逻辑判断和推理,具有短时记忆,总体记忆容量比较小。经常出现的信息,逻辑脑就会把它转移到图像脑,深层记忆中保存下来!2.2两个中心的处理机制成年人的大脑,习惯了主要使用逻辑脑542.2两个中心的处理机制逻辑脑主宰人的思维,人们最重视的就是这个大脑!长期以来,以为人只有这个大脑存在,它代表理性和思维。逻辑脑容易遗忘!2.2两个中心的处理机制逻辑脑主宰人的思维,人们最重视的552.3两个中心的处理机制对非逻辑脑的研究始于弗洛伊德(SigmundFreud)的潜意识理论,目前已经是一门很重要的学科!研究表明:信息量特别大的图像,如运动,音乐和快速的信息处理,必然是由高速脑、也就是非逻辑脑来完成的!2.3两个中心的处理机制对非逻辑脑的研究始于弗洛伊德(Si562.3两个中心的处理机制高速脑具有庞大而快速的记忆能力,可以过目不忘,在不经意中完成学习和记忆!非逻辑脑很难通过有意识的控制来学习知识;大多数人都不善于使用自己的快速脑;有些人经过训练,可以用高速脑来完成普通人用低速脑做的事情,感觉他们就是天才。“不假思索”2.3两个中心的处理机制高速脑具有庞大而快速的记忆能力,可573现有智能方法及其局限性人工智能(ArtificialIntelligence,AI),是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。基于人的慢速脑研究;思维观点:AI不仅限于逻辑思维,还应考虑形象思维、灵感思维,才能促进AI的突破性的发展。3现有智能方法及其局限性人工智能(ArtificialI583现有智能方法及其局限性人工智能神经网络小波分析模式识别模糊聚类专家系统遗传算法3现有智能方法及其局限性人工智能神经网络小波分析模式识别模593.1神经网络的方法人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应非线性动态系统。人工神经元网络是生物神经网络的一种模拟和近似,它从结构、实现机理和功能上模拟生物神经网络。3.1神经网络的方法人工神经元网络是由大量神经元通过极其丰603.1神经网络的方法神经网络优点(1)强的鲁棒性和容错性,并行处理方法;(2)自学习、自组织、自适应性,可以处理不确定或不知道的系统;(3)充分逼近任意复杂的非线性关系;(4)强的信息综合能力,能同时处理定量和定性的信息,协调多种输入信息关系。3.1神经网络的方法神经网络优点613.1神经网络的方法神经网络缺点(1)难于精确分析神经网络的各项性能指标;(2)不宜用来求解必须得到正确答案的问题:自发的集体行为;(3)不宜用来求解用数字计算机解决得很好问题;(4)体系结构的通用性差。3.1神经网络的方法神经网络缺点623.1神经网络的方法神经网络主要应用:如自动控制领域、处理组合优化问题、模式识别、图像处理、传感器信号处理、机器人控制、信号处理、数据挖掘等。神经网络与其他方法相结合,取长补短:如神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。3.1神经网络的方法神经网络主要应用:如自动控制领域、处理633.2遗传算法遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。3.2遗传算法遗传算法(GeneticAlgorithm643.2遗传算法遗传算法的特点:

(1)从问题解的串集开始搜索,覆盖面大,利于全局择优;(2)同时处理群体中的多个个体,减少了陷入局部最优解的风险,易于实现并行化;

(3)采用概率的变迁规则来指导它的搜索方向;

(4)具有自组织、自适应和自学习性。

3.2遗传算法遗传算法的特点:653.3小波分析小波分析:数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。小波分析是对Fourier分析方法的突破,不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和高频信号在时域都有很好的分辨率,从而可以聚集到对象的任意细节。3.3小波分析小波分析:数学显微镜,具有放大、缩小和平移功663.3小波分析小波分析两大优点:(1)时频联合分析方法,自适应地调节时频窗口,同时具有时频域局部化的性能;(2)小波函数可作为许多经典函数空间的无条件基,通过快速离散小波变换能够实现这些空间中的函数逼近。3.3小波分析小波分析两大优点:673.4局限性本质而言,AI是对人的思维过程的模拟,人的思维模拟可以从两条路进行:1.结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;2.功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。3.4局限性本质而言,AI是对人的思维过程的模拟,人的思683.4局限性(1)理论基点:思维即计算(2)理论框架:演绎逻辑背景下的形式系统(3)手

段:形式化方法(4)执行环境:冯

诺依曼计算机系统3.4局限性(1)理论基点:思维即计算693.4局限性(1)思维即计算:发展过程图灵机:能模拟人类所能进行的任何计算过程主要内涵是抽象思维,而人的思维有多种方式,即使是抽象思维,不能完全归结为计算。数学中解题思想是如何产生的?这一思维过程能否通过计算实现?人脸识别中,特征信息的选取3.4局限性(1)思维即计算:发展过程703.4局限性(2)演绎逻辑背景下的形式系统形式系统形式系统的语义单一性记忆的事物可能不止一个含义,一个意义人的思维有极大的灵活性,能去伪存真、由表及里、广泛联想仅仅依靠形式系统这一理论框架是不够的3.4局限性(2)演绎逻辑背景下的形式系统713.4局限

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论