概率统计学-随机变量的数字特征_第1页
概率统计学-随机变量的数字特征_第2页
概率统计学-随机变量的数字特征_第3页
概率统计学-随机变量的数字特征_第4页
概率统计学-随机变量的数字特征_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章随机变量的数字特征1定义1

设X为离散型随机变量,其概率分布为若无穷级数绝对收敛,则称其和为随机变量X

的数学期望记作E(X)数学期望的定义随机变量的数学期望2定义2

设X为连续型随机变量,其密度函数为若广义积分绝对收敛,则称此积分为随机变量X

的数学期望记作E(X)

随机变量的数学期望的本质——

加权平均,它是一个数不再是随机变量3

E(C)=C

E(aX)=aE(X)

E(X+Y)=E(X)+E(Y)

当X,Y相互独立时,E(XY)=E(X)E(Y).数学期望的性质4引例甲、乙两射手各打了10发子弹,每发子弹击中的环数分别为:甲10,6,7,10,8,9,9,10,5,10乙8,7,9,10,9,8,7,9,8,9问哪一个射手的技术较好?解

首先比较平均环数甲=8.4,乙=8.4§5.2方差有六个不同数据仅有四个不同数据5再比较稳定程度乙比甲技术稳定6甲:乙:进一步比较平均偏离平均值的程度7甲乙定义若E((X-E(X))2)存在,则称其为随机变量X的方差,

记为D(X)

D(X)=E((X-E(X))2)称为X的均方差.

方差的概念(X-E(X))2——随机变量X的取值偏离平均值的情况,是X的函数,也是随机变量

E(X-E(X))2——随机变量X的取值偏离平均值的平均偏离程度——是一个数。8若

X为离散型变量,概率分布为若

X为连续型,概率密度为f(x)常用的计算方差的公式:9

D(C)=0

D(aX)=a2D(X)D(aX+b)=a2D(X)

特别地,若X,Y相互独立,则

方差的性质10若相互独立,为常数则若X,Y相互独立

对任意常数C,D(X)

E(X–C)2,

当且仅当C=E(X)时等号成立D(X)=0P(X=E(X))=1称为X依概率1等于常数E(X)

11例

设X~P(),求D(X).解

方差的计算12例

设X~B(n,p),求D(X).解一仿照上例求D(X).解二引入随机变量相互独立,故13例

设X~N(,2),求D(X)解14常见随机变量的方差分布方差概率分布参数为p

的0-1分布p(1-p)B(n,p)np(1-p)P()15分布方差概率密度区间(a,b)上的均匀分布E()N(,2)1617例

将编号分别为1~n的n

个球随机地放入编号分别为1~n的n

只盒子中,每盒一球.

若球的号码与盒子的号码一致,则称为一个配对.

求配对个数X的期望与方差.解则不相互独立,但18P1019P10P102021仅知随机变量的期望与方差并不能确定其分布,例如:P-1010.10.80.1P-2020.0250.950.025与它们有相同的期望、方差但是分布却不同22但若已知分布的类型,及期望和方差,常能确定分布.例

已知

X服从正态分布,E(X)=1.7,D(X)=3,

Y=1–2X,求

Y

的密度函数.解

23标准化随机变量设随机变量X

的期望E(X)、方差D(X)都存在,且D(X)0,则称为

X的标准化随机变量.显然,为什么?24§5.4

协方差和相关系数问题对于二维随机变量(X,Y):已知联合分布边缘分布

这说明对于二维随机变量,除了每个随机变量各自的概率特性以外,相互之间可能还有某种联系.问题是用一个什么样的数去反映这种联系.

数反映了随机变量X,Y之间的某种关系25定义称为X,Y的协方差.记为称为(X,Y)的协方差矩阵可以证明协方差矩阵为半正定矩阵协方差和相关系数的定义26若D(X)>0,D(Y)>0,称为X,Y的相关系数,记为事实上,若称X,Y不相关.27

若(X,Y)为离散型,

若(X,Y)为连续型,协方差和相关系数的计算

28求cov(X,Y),XY10pqXP10pqYP例

已知

X,Y的联合分布为XYpij1010p0

0q0<p<1p+q=1解10pqXYP2930例

设(X,Y)~N(1,12,2,22,),求XY解:31若(X,Y)~N(1,12,2,22,),则X,Y相互独立X,Y不相关32例

设~U(0,2),X=cos,Y=cos(+),是给定的常数,求XY解3334若若有线性关系但若不相关,不独立,没有线性关系,但此时,有函数关系由X,Y表达式:由X,Y表达式:35例

设X,Y相互独立,且都服从

N(0,2),

U=aX+bY,V=aX-bY,a,b为正常数,且都不为零,求UV解由36而故继续讨论:a,b取何值时,

U,V不相关?此时,U,V是否独立?若a=b,UV=0,则U,V不相关.

此时,U,V也是独立的。协方差的性质

协方差和相关系数的性质当D(X)>0,D(Y)>0时,等号成立当且仅当38证5:

令对任何实数t,即

—Cauchy-Schwarz不等式其中39等号成立有两个相等的实零点即又显然40即即Y与X有线性关系的概率等于1,这种线性关系为41完全类似地可以证明当E(X2)>0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论