版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥32.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A. B. C. D.3.下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹4.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数5.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近6.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟7.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A. B.C. D.8.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=49.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个10.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.12.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示13.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+=.14.分式方程的解为__________.15.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.16.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.三、解答题(共8题,共72分)17.(8分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)18.(8分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.19.(8分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).20.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.21.(8分)计算:1222.(10分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)23.(12分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.(1)求证:OE=OF;(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.24.如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.2、D【解析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,,,当时,,的图象经过二、三、四象限,观察可得D选项的图象符合,故选D.【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.3、B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B.4、B【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.5、D【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B.“抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;C.“彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.6、D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.7、C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.8、D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.9、C【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.10、B【解析】
解方程得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.12、【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.【详解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案为.【点睛】本题考查了相似三角形的判定和性质以及向量的运算.13、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.14、-1【解析】【分析】先去分母,化为整式方程,然后再进行检验即可得.【详解】两边同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是分式方程的解,故答案为:-1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15、(,)【解析】
作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.【详解】如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,
∵A(3,),
∴OC=3,AC=,
∵OB=6,
∴BC=OC=3,
则tan∠ABC==,
由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,
∴==,
设O′D=x,BD=3x,
由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
解得:x=或x=−(舍),
则BD=3x=,O′D=x=,
∴OD=OB+BD=6+=,
∴点O′的坐标为(,).【点睛】本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.16、2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理三、解答题(共8题,共72分)17、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的长求出OA,在Rt△BOC,由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。【详解】由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.【点睛】本题主要考查三角函数的知识。18、﹣x+1,2.【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)•=﹣x+1,当x=﹣1时,原式=1+1=2.【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.19、(2)2;(2)y=x+2;(3).【解析】
(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有,解得,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′=.【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.20、m的值是12.1.【解析】
根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值【详解】由题意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.21、-1【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.【详解】原式=1﹣4﹣+1﹣=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.22、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年临时工派遣合同样本
- 信托公司委托贷款合同
- 缆索吊机租赁合同样本
- 标准家教服务合同范本
- 2024标准附期限借款合同样本
- 2024模板采购合同范本
- 2024工程装修简易合同样本
- 物业租赁合同模板
- 技术服务合同中的保密义务与条款
- 建材产品购销协议样本
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
- 年产30万吨碳酸钙粉建设项目可行性研究报告
- 主题班会如何对待厌学情绪(初二) 省赛获奖 省赛获奖
- 初中数学北师大版七年级上册课件5-4 应用一元一次方程-打折销售
- 0-6岁儿童健康管理服务规范(第三版)
评论
0/150
提交评论