上海浦东第四教育署重点达标名校2022年中考数学考试模拟冲刺卷含解析_第1页
上海浦东第四教育署重点达标名校2022年中考数学考试模拟冲刺卷含解析_第2页
上海浦东第四教育署重点达标名校2022年中考数学考试模拟冲刺卷含解析_第3页
上海浦东第四教育署重点达标名校2022年中考数学考试模拟冲刺卷含解析_第4页
上海浦东第四教育署重点达标名校2022年中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长 B.线段EF的长逐渐减小C.线段EF的长始终不变 D.线段EF的长与点P的位置有关2.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A. B. C. D.3.下列计算结果是x5的为()A.x10÷x2B.x6﹣xC.x2•x3D.(x3)24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为()A.8cm B.4cm C.4cm D.5cm5.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为()A. B. C. D.4﹣6.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D7.下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a68.某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,209.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×10710.若二次函数的图象经过点(﹣1,0),则方程的解为()A., B., C., D.,11.如图图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.cos30°的相反数是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.14.关于的方程有两个不相等的实数根,那么的取值范围是__________.15.二次函数的图象如图所示,给出下列说法:①;②方程的根为,;③;④当时,随值的增大而增大;⑤当时,.其中,正确的说法有________(请写出所有正确说法的序号).16.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.17.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是。18.把16a3﹣ab2因式分解_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?20.(6分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.21.(6分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.(1)如图,若m=﹣,n=,点B的纵坐标为,①求k的值;②作线段CD,使CD∥AB且CD=AB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),①求m,n的值;②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是.22.(8分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.(1)直接写出抛物线y=x2的焦点坐标以及直径的长.(2)求抛物线y=x2-x+的焦点坐标以及直径的长.(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.23.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:类(),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:类学生有人,补全条形统计图;类学生人数占被调查总人数的%;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在中的概率.24.(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.25.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人;(2)补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.26.(12分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.(1)求证:≌;(2)当时,求四边形AECF的面积.27.(12分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线2、D【解析】

延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【详解】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.3、C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.4、C【解析】

连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴故选:C.【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.5、D【解析】

首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分线,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.6、D【解析】

根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.7、B【解析】

分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【详解】A.a3+a4≠a7,不是同类项,不能合并,本选项错误;B.a4÷a3=a4-3=a;,本选项正确;C.a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.8、D【解析】

先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.9、A【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6700000=6.7×106,故选:A【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、C【解析】

∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.考点:抛物线与x轴的交点.11、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.12、C【解析】

先将特殊角的三角函数值代入求解,再求出其相反数.【详解】∵cos30°=,∴cos30°的相反数是,故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4【解析】

根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.【详解】∵二次函数的对称轴为直线x=2,∴点A的坐标为(4,0),∵点C的坐标为(0,-2),∴点B的坐标为(4,-2),∴BC=4,则.【点睛】本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.14、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案为:m<且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.15、①②④【解析】

根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),∴方程x2+bx+c=0的根为x1=-1,x2=3,②正确;∵当x=1时,y<0,∴a+b+c<0,③错误;由图象可知,当x>1时,y随x值的增大而增大,④正确;当y>0时,x<-1或x>3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.16、5【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.考点:直角三角形斜边上的中线.17、30°【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵△AOB是正三角形∴∠AOB=60°∴∠ACB=30°.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.18、a(4a+b)(4a﹣b)【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案为:a(4a+b)(4a-b).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.【解析】

设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.可列方程组为解得答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩.20、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】

(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.21、(1)①k=5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5【解析】

(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.【详解】(1)①∵,,∴直线的解析式为,∵点B在直线上,纵坐标为,∴,解得x=2∴,∴;②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①∵点在上,∴k=5,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∴A,B关于直线y=x对称,∴,则有:,解得;②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.∵A,C关于原点对称,,∴,∵,当时,∴,∴,∴a=5或(舍弃),当点P在点A的左侧时,同法可得a=1,∴满足条件的a的范围为或.【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.22、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,【解析】

(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;(4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.【详解】(1)∵抛物线y=x1,∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,∴抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,∴此抛物线的直径是:1-(-1)=4;(1)∵y=x1-x+=(x-3)1+1,∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,∴焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,∴此抛物线的直径时5-1=4;(3)∵焦点A(h,k+),∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,∴直径为:h+-(h-)==,解得,a=±,即a的值是;(4)①由(3)得,BC=,又CD=A'A=.所以,S=BC•CD=•==1.解得,a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,∴当m=1-或m=5+时,1个公共点;当1-<m≤1或5≤m<5+时,1个公共点.由图可知,公共点个数随m的变化关系为当m<1-时,无公共点;当m=1-时,1个公共点;当1-<m≤1时,1个公共点;当1<m<5时,3个公共点;当5≤m<5+时,1个公共点;当m=5+时,1个公共点;当m>5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-<m≤1或5≤m<5+时,1个公共点.【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.23、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D类:1850×100%=36%,故答案为:36%;(3)设这5人为有以下10种情况:其中,两人都在的概率是:.24、(1)1000;(2)54°;(3)见解析;(4)32万人【解析】

根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案为:1000人;

54°

;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论