版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x2.函数的最小值为()A. B.C.0 D.3.若函数在闭区间上有最大值5,最小值1,则的取值范围是()A. B.C. D.4.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.5.函数的定义域是()A. B.C. D.(0,4)6.若,则错误的是A. B.C. D.7.已知是非零向量且满足,,则与的夹角是()A. B.C. D.8.函数的最大值为()A. B.C.2 D.39.已知函数则的值为()A. B.0C.1 D.210.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m12.已知,,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题(本大题共4小题,共20分)13.在区间上随机取一个实数,则事件发生的概率为_________.14.已知角的终边过点,求_________________.15.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.16.______.三、解答题(本大题共6小题,共70分)17.已知函数.(1)判断函数的奇偶性,并证明;(2)设函数,若对任意的,总存在使得成立,求实数m的取值范围.18.为适应新冠肺炎疫情长期存在的新形势,打好疫情防控的主动仗,某学校大力普及科学防疫知识,现需要在2名女生、3名男生中任选2人担任防疫宣讲主持人,每位同学当选的机会是相同的.(1)写出试验的样本空间,并求当选的2名同学中恰有1名女生的概率;(2)求当选的2名同学中至少有1名男生的概率.19.(1)求值:;(2)已知,,试用表示.20.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.21.已知点A、B、C的坐标分别为、、,.(1)若,求角的值;(2)若,求的值.22.已知函数的定义域为,若存在实数,使得对于任意都存在满足,则称函数为“自均值函数”,其中称为的“自均值数”.(1)判断函数是否为“自均值函数”,并说明理由:(2)若函数,为“自均值函数”,求的取值范围;(3)若函数,有且仅有1个“自均值数”,求实数的值.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数2、C【解析】利用对数函数单调性得出函数在时取得最小值【详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C3、D【解析】数形结合:根据所给函数作出其草图,借助图象即可求得答案【详解】,令,即,解得或,,作出函数图象如下图所示:因为函数在闭区间上有最大值5,最小值1,所以由图象可知,故选:D【点睛】本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解“三个二次”间的关系是解决该类问题的关键4、B【解析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.5、C【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【详解】由,故选:C6、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D7、B【解析】利用向量垂直求得,代入夹角公式即可.【详解】设的夹角为;因为,,所以,则,则故选:B【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.8、B【解析】先利用,得;再用换元法结合二次函数求函数最值.【详解】,,当时取最大值,.故选:B【点睛】易错点点睛:注意的限制条件.9、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.10、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B11、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A12、B【解析】利用充分、必要条件的定义,结合不等式的性质判断题设条件间的推出关系,即可知条件间的充分、必要关系.【详解】当时,若时不成立;当时,则必有成立,∴“”是“”的必要不充分条件.故选:B二、填空题(本大题共4小题,共20分)13、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型14、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.15、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,16、【解析】首先利用乘法将五进制化为十进制,再利用“倒序取余法”将十进制化为二进制即可.【详解】,根据十进制化为二进制“倒序取余法”如下:可得.故答案为:【点睛】本题考查了进位制的转化,在求解过程中,一般都是先把其它进制转化为十进制,再用倒序取余法转化为其它进制,属于基础题.三、解答题(本大题共6小题,共70分)17、(1)偶函数,证明见解析(2)【解析】(1)为偶函数,利用偶函数定义证明即可;(2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值,分析即得解.【小问1详解】为偶函数证明:,故,解得的定义域为,关于原点对称,为偶函数【小问2详解】若对任意的,总存在,使得成立则又,当且仅当,即取等号所以所求实数m的取值范围为18、(1)样本空间答案见解析,概率是(2)【解析】(1)将2名女生,3名男生分别用a,b;c,d,e表示,即可列出样本空间,再根据古典概型的概率公式计算可得;(2)设事件“当选的2名同学中至少有1名男生”,事件“当选的2名同学中全部都是女生”,事件B,C为对立事件,利用古典概型的概率公式求出,最后根据对立事件的概率公式计算可得;【小问1详解】解:将2名女生,3名男生分别用a,b;c,d,e表示,则从5名同学中任选2名同学试验的样本空间为,共有10个样本点,设事件“当选的2名同学中恰有1名女生”,则,样本点有6个,∴.即当选的2名同学中恰有1名女生的概率是【小问2详解】解:设事件“当选的2名同学中至少有1名男生”,事件“当选的2名同学中全部都是女生”,事件B,C为对立事件,因为,∴,∴.即当达的2名同学中至少有1名男生的概率是.19、(1)(2)【解析】(1)先将小数转化为分数并约简,然后各式化成指数幂的形式,再利用指数运算法则即可化简求值.(2)先利用对数的换底公式,以及相关的运算公式将转化为以表示的式子,然后换成m,n即可.【详解】解:(1)原式(2)原式【点睛】主要考查指数幂运算公式以及对数的运算公式的应用,属于基础题.20、(1);(2).【解析】(1)根据函数为奇函数求参数值,注意验证是否符合题设.(2)将问题转化为在上恒成立,根据解析式判断的区间单调性,即可求的范围.小问1详解】由题设,,∴,即,故,当时,,不成立,舍去;当时,,验证满足.综上:.【小问2详解】由,即,又为增函数,由(1)所得解析式知:上递增,∴在单调递增-故,故.21、(1);(2)【解析】(1)根据两向量的模相等,利用两点间的距离公式建立等式求得的值,根据的范围求得;(2)根据向量的基本运算根据,求得和的关系式,然后用同角和与差的关系可得到,再由化简可得,进而可确定答案【详解】(1)∵,∴化简得,∵,∴(2)∵,∴,∴,∴,∴【点睛】本题主要考查两角和与差的基本关系和三角与向量的综合题22、(1)不是,理由见解析;(2);(3)或.【解析】(1)假定函数是“自均值函数”,由函数的值域与函数的值域关系判断作答.(2)根据给定定义可得函数在上的值域包含函数在上的值域,由此推理计算作答.(3)根据给定定义可得函数在上的值域包含函数在上的值域,再借助a值的唯一性即可推理计算作答.【小问1详解】假定函数是“自均值函数”,显然定义域为R,则存在,对于,存在,有,即,依题意,函数在R上的值域应包含函数在R上的值域,而当时,值域是,当时,的值域是R,显然不包含R,所以函数不“自均值函数”.【小问2详解】依题意,存在,对于,存在,有,即,当时,的值域是,因此在的值域包含,当时,而,则,若,则,,此时值域的区间长度不超过,而区间长度为1,不符合题意,于是得,,要在的值域包含,则在的最小值小于等于0,又时,递减,且,从而有,解得,此时,取,的值域是包含于在的值域,所以的取值范围是.【小问3详解】依题意,存在,对于,存在,有,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《老年人能力综合评估规范》标准修订编制说明
- DB11T 1031-2013 低层蒸压加气混凝土承重建筑技术规程
- 农业机械采购招投标文件范本
- 智慧城市解决方案研发外包制度
- 活动策划师聘用合同模板
- 汽车维修招投标操作规程
- 医药电商子公司用户体验改进
- 教育机构硬化地面施工合同
- 城镇医疗救助管理办法综合
- 教育公司消防管道安装合同
- 堆垛机安装指南演示文稿
- 退休欢送会上本人感人讲话稿(5篇)
- 《一切都是最好的安排》读书笔记思维导图PPT模板下载
- 定点医疗机构接入验收申请表
- 专业技术职务任职资格评审表高级
- 腹部按压技巧肠镜检查辅助技巧
- gsk983ma铣床加工中心数控系统使用手册2010年4月
- 材料物理性能(安工大)ppt
- 锥坡工程量计算(支持斜交、溜坡计算)
- 进展性卒中内科治疗
- 中国智库名录类别索引-社会智库
评论
0/150
提交评论