下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《用二分法求方程的近似解》教学设计课程名称用二分法求方程的近似解课时1课时学段学科高一数学教材版本人教A版作者孙玉华、王秋艳学校37中学一、教学目标1.根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;2.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.二、教学重难点二分法思想的应用三、学情分析学生已初步掌握了方程的根与函数的零点之间的关系,并在此基本上来研究二分法四、教学方法学导式法五、教学过程一、课前准备(预习教材P89~P91,找出疑惑之处)复习1:什么叫零点?零点的等价性?零点存在性定理?对于函数,我们把使的实数x叫做函数的零点.方程有实数根函数的图象与x轴函数.如果函数在区间上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点.复习2:一元二次方程求根公式?三次方程?四次方程?二、新课导学※学习探究探究任务:二分法的思想及步骤问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.解法:第一次,两端各放个球,低的那一端一定有重球;第二次,两端各放个球,低的那一端一定有重球;第三次,两端各放个球,如果平衡,剩下的就是重球,否则,低的就是重球.思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?新知:对于在区间上连续不断且<0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).反思:给定精度ε,用二分法求函数的零点近似值的步骤如何呢?①确定区间,验证,给定精度ε;②求区间的中点;③计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);④判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤②~④.※典型例题例1借助计算器或计算机,利用二分法求方程的近似解.变式:求方程的根大致所在区间.※动手试试练1.求方程的解的个数及其大致所在区间.练2.求函数的一个正数零点(精确到)零点所在区间中点函数值符号区间长度三、总结提升※学习小结①二分法的概念;②二分法步骤;③二分法思想.※当堂检测(时量:5分钟满分:10分)计分:1.若函数在区间上为减函数,则在上().A.至少有一个零点B.只有一个零点C.没有零点D.至多有一个零点2.下列函数图象与轴均有交点,其中不能用二分法求函数零点近似值的是().3.函数的零点所在区间为().A.B.C.D.4.用二分法求方程在区间[2,3]内的实根,由计算器可算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年曲靖市罗平县森林草原防灭火指挥部关公开招聘森林消防应急救援队员12人备考题库及完整答案详解1套
- 信息技术外包与合作伙伴管理制度
- 2026年石家庄市长安区第十五幼儿园招聘备考题库完整参考答案详解
- 2026年沙河回族乡卫生院公开招聘检验人员的备考题库参考答案详解
- 2026年长垣市德邻学校招聘备考题库有答案详解
- 企业档案管理制度
- 中学学生课外实践基地建设制度
- 2026年桦甸市产业发展有限公司招聘6人备考题库完整参考答案详解
- 养老院入住老人法律法规宣传教育制度
- 2026年雄安高新区建设发展有限公司公开招聘10人备考题库带答案详解
- 2026年七台河职业学院单招综合素质考试备考试题带答案解析
- GB/T 18344-2025汽车维护、检测、诊断技术规范
- 安徽省合肥市蜀山区2024-2025学年七年级(上)期末数学试卷(无答案)
- 第六单元课外古诗词诵读《南安军》说课稿 2023-2024学年统编版语文九年级下册
- 食堂2023年工作总结及2024年工作计划(汇报课件)
- 机器学习课件周志华Chap08集成学习
- 殡仪馆鲜花采购投标方案
- T-GDWCA 0035-2018 HDMI 连接线标准规范
- 面板堆石坝面板滑模结构设计
- 无人机装调检修工培训计划及大纲
- GB/T 3683-2023橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
评论
0/150
提交评论