版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page11页,共=sectionpages33页试卷第=page3434页,共=sectionpages3434页2021年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。1.(3分)(2021•白银)3的倒数是()A.﹣3 B.3 C.﹣ D.2.(3分)(2021•白银)2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是()A. B. C. D.3.(3分)(2021•白银)下列运算正确的是()A.+=3 B.4﹣=4 C.×= D.÷=44.(3分)(2021•白银)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为()A.5×108 B.5×109 C.5×1010 D.50×1085.(3分)(2021•白银)将直线y=5x向下平移2个单位长度,所得直线的表达式为()A.y=5x﹣2 B.y=5x+2 C.y=5(x+2) D.y=5(x﹣2)6.(3分)(2021•白银)如图,直线DE∥BF,Rt△ABC的顶点B在BF上,若∠CBF=20°,则∠ADE=()A.70° B.60° C.75° D.80°7.(3分)(2021•白银)如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=()A.48° B.24° C.22° D.21°8.(3分)(2021•白银)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A. B. C. D.9.(3分)(2021•白银)对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=()A.﹣2 B.﹣1 C.2 D.310.(3分)(2021•白银)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3 B.6 C.8 D.9二、填空题:本大题共8小题,每小题3分,共24分。11.(3分)(2021•白银)因式分解:4m﹣2m2=.12.(3分)(2021•白银)关于x的不等式x﹣1>的解集是.13.(3分)(2021•白银)关于x的方程x2﹣2x+k=0有两个相等的实数根,则k的值是。14.(3分)(2021•白银)开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的众数是℃。15.(3分)(2021•白银)如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE=cm.16.(3分)(2021•白银)若点A(﹣3,y1),B(﹣4,y2)在反比例函数y=的图象上,则y1y2.(填“>”或“<”或“=”)17.(3分)(2021•白银)如图,从一块直径为4dm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为dm2.18.(3分)(2021•白银)一组按规律排列的代数式:a+2b,a2﹣2b3,a3+2b5,a4﹣2b7,…,则第n个式子是.三、解答题:本大题共5小题,共26分。解答时,应写出必要的文字说明、证明过程或演算步骤。19.(4分)(2021•白银)计算:(2021﹣π)0+()﹣1﹣2cos45°.20.(4分)(2021•白银)先化简,再求值:(2﹣)÷,其中x=4.21.(6分)(2021•白银)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法);①作线段AC的垂直平分线DE,分别交于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.22.(6分)(2021•白银)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B在同一条直线上).数据收集:通过实地测量:地面上A,B两点的距离为58m,∠CAD=42°,∠CBD=58°.问题解决:求宝塔CD的高度(结果保留一位小数).参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.根据上述方案及数据,请你完成求解过程.23.(6分)(2021•白银)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).四、解答题:本大题共5小题,共40分。解答时,应写出必要的文字说明、证明过程或演算步骤。24.(7分)(2021•白银)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩xA50≤x<60B60≤x<70C70≤x<80D80≤x<90E90≤x≤100(1)本次调查一共随机抽取了名学生的成绩,频数分布直方图中m=;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?25.(7分)(2021•白银)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.(1)小刚家与学校的距离为m,小刚骑自行车的速度为m/min;(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;(3)小刚出发35分钟时,他离家有多远?26.(8分)(2021•白银)如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.27.(8分)(2021•白银)问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,∠AED=60°,AE=6,BF=2,求DE的长.28.(10分)(2021•白银)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.(1)求抛物线y=x2+bx+c的表达式;(2)当GF=时,连接BD,求△BDF的面积;(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.
2021年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。1.(3分)(2021•白银)3的倒数是()A.﹣3 B.3 C.﹣ D.【考点】倒数.【分析】根据倒数的定义进行答题.【解答】解:设3的倒数是a,则3a=1,解得,a=.故选:D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2021•白银)2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念判断求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图形沿某条直线折叠,如果图形的两部分能够重合,那么这个图形是轴对称图形.3.(3分)(2021•白银)下列运算正确的是()A.+=3 B.4﹣=4 C.×= D.÷=4【考点】二次根式的混合运算.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.【点评】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的乘法和除法法则.4.(3分)(2021•白银)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为()A.5×108 B.5×109 C.5×1010 D.50×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将50亿用科学记数法表示为5×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2021•白银)将直线y=5x向下平移2个单位长度,所得直线的表达式为()A.y=5x﹣2 B.y=5x+2 C.y=5(x+2) D.y=5(x﹣2)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则求解即可.【解答】解:将直线y=5x向下平移2个单位长度,所得的函数解析式为y=5x﹣2.故选:A.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.6.(3分)(2021•白银)如图,直线DE∥BF,Rt△ABC的顶点B在BF上,若∠CBF=20°,则∠ADE=()A.70° B.60° C.75° D.80°【考点】平行线的性质.【分析】根据角的和差得到∠ABF=70°,再根据两直线平行,同位角相等即可得解.【解答】解:∵∠ABC=90°,∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=70°,∵DE∥BF,∴∠ADE=∠ABF=70°,故选:A.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.7.(3分)(2021•白银)如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=()A.48° B.24° C.22° D.21°【考点】圆心角、弧、弦的关系;圆周角定理.【分析】连接OC、OD,可得∠AOB=∠COD=42°,由圆周角定理即可得∠CED=∠COD=21°.【解答】解:连接OC、OD,∵AB=CD,∠AOB=42°,∴∠AOB=∠COD=42°,∴∠CED=∠COD=21°.故选:D.【点评】本题主要考查圆心角、弧、弦三者的关系以及圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(3分)(2021•白银)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A. B. C. D.【考点】数学常识;由实际问题抽象出二元一次方程组.【分析】设共有x人,y辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设共有x人,y辆车,依题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)(2021•白银)对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=()A.﹣2 B.﹣1 C.2 D.3【考点】整式的加减—化简求值.【分析】根据(m,n)是“相随数对”得出9m+4n=0,再将原式化成9m+4n﹣2,最后整体代入求值即可.【解答】解:∵(m,n)是“相随数对”,∴+=,∴=,即9m+4n=0,∴3m+2[3m+(2n﹣1)]=3m+2[3m+2n﹣1]=3m+6m+4n﹣2=9m+4n﹣2=0﹣2=﹣2,故选:A.【点评】本题考查代数式求值,理解“相随数对”的意义是正确计算的关键.10.(3分)(2021•白银)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3 B.6 C.8 D.9【考点】动点问题的函数图象.【分析】先根据AB=BC结合图2得出AB=,进而利用勾股定理得,AD²+BD²=13,再由运动结合△ADM的面积的变化,得出点M和点B重合时,△ADM的面积最大,其值为3,即AD•BD=3,进而建立二元二次方程组求解,即可得出结论.【解答】解:由图2知,AB+BC=2,∵AB=BC,∴AB=,∵AB=BC,BD⊥BC,∴AC=2AD,∠ADB=90°,在Rt△ABD中,AD²+BD²=AB²=13①,设点M到AC的距离为h,∴S△ADM=AD•h,∵动点M从A点出发,沿折线AB→BC方向运动,∴当点M运动到点B时,△ADM的面积最大,即h=BD,由图2知,△ADM的面积最大为3,∴AD•BC=3,∴AD•BD=6②,①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,∴(AD+BD)²=25,∴AD+BD=5(负值舍去),∴BD=5﹣AD③,将③代入②得,AD(5﹣AD)=6,∴AD=3或AD=2,∵AD>BD,∴AD=3,∴AC=2AD=6,故选:B.【点评】此题主要考查了等腰三角形的性质,三角形的面积公式,判断出AB=和点M和点B重合时,△ADM的面积为3是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分。11.(3分)(2021•白银)因式分解:4m﹣2m2=2m(2﹣m).【考点】因式分解﹣提公因式法.【分析】提取公因式进行因式分解.【解答】解:4m﹣2m2=2m(2﹣m),故答案为:2m(2﹣m).【点评】本题考查提公因式法进行因式分解,掌握提取公因式的技巧准确计算是解题关键.12.(3分)(2021•白银)关于x的不等式x﹣1>的解集是x>.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:x>1+,合并同类项,得:x>,系数化为1,得:x>,故答案为:x>.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变.13.(3分)(2021•白银)关于x的方程x2﹣2x+k=0有两个相等的实数根,则k的值是1。【考点】根的判别式.【分析】根据根的判别式△=0,即可得出关于k的一元一次方程,解之即可得出k值.【解答】解:∵关于x的方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×k=0,解得:k=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)(2021•白银)开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的众数是36.6℃。【考点】众数.【分析】根据众数的定义就可解决问题.【解答】解:36.6出现的次数最多有4次,所以众数是36.6.故答案为:36.6.【点评】本题主要考查了众数的定义,正确理解众数的意义是解决本题的关键.15.(3分)(2021•白银)如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE=6cm.【考点】含30度角的直角三角形;直角三角形斜边上的中线;矩形的性质.【分析】先利用直角三角形斜边上的中线等于斜边的一半,求出AD长,再根据矩形的性质得出AD∥BC,∠B=90°,然后解直角三角形ABE即可.【解答】解:∵∠AED=90°F是AD边的中点,EF=4,∴AD=2EF=8,∵∠EAD=30°,∴AE=AD•cos∠30°=8×=4,又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠BEA=∠AED=30°,在Rt△ABE中,BE=AE•cos∠BEA=4×cos30°=4×=6(cm),故答案为:6.【点评】本题考查了矩形的性质直角三角形斜边上的中线以及解直角三角形,关键是利用直角三角形斜边上的中线求出AD的长.16.(3分)(2021•白银)若点A(﹣3,y1),B(﹣4,y2)在反比例函数y=的图象上,则y1<y2.(填“>”或“<”或“=”)【考点】反比例函数的图象;反比例函数的性质;反比例函数图象上点的坐标特征.【分析】反比例函数y=的图象在一、三象限,在每个象限内,y随x的增大而减小,判断出y的值的大小关系.【解答】解:∵k=a2+1>0,∴反比例函数y=的图象在一、三象限,且在每个象限内y随x的增大而减小,∵点A(﹣3,y1),B(﹣4,y2)同在第三象限,且﹣3>﹣4,∴y1<y2,故答案为<.【点评】本题考查反比例函数的图象和性质,掌握反比例函数的增减性是解决问题的关键,17.(3分)(2021•白银)如图,从一块直径为4dm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为2πdm2.【考点】扇形面积的计算.【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.【解答】解:连接AC,∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=4dm,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=2dm,∴阴影部分的面积是=2π(dm2).故答案为:2π.【点评】本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解此题的关键.18.(3分)(2021•白银)一组按规律排列的代数式:a+2b,a2﹣2b3,a3+2b5,a4﹣2b7,…,则第n个式子是an+(﹣1)n+1•2b2n﹣1.【考点】规律型:数字的变化类;多项式.【分析】根据已知的式子可以得到每个式子的第一项中a的次数是式子的序号;第二项的符号:第奇数项是正号,第偶数项是负号;第二项中b的次数是序号的2倍减1,据此即可写出.【解答】解:观察代数式,得到第n个式子是:an+(﹣1)n+1•2b2n﹣1.故答案为:an+(﹣1)n+1•2b2n﹣1.【点评】本题考查了探索规律,根据所排列的代数式,总结出规律是解题的关键.三、解答题:本大题共5小题,共26分。解答时,应写出必要的文字说明、证明过程或演算步骤。19.(4分)(2021•白银)计算:(2021﹣π)0+()﹣1﹣2cos45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据零指数幂,负整数指数幂,特殊角的三角函数值计算即可.【解答】解:原式=1+2﹣2×=3﹣.【点评】本题考查了零指数幂,负整数指数幂,特殊角的三角函数值,牢记a﹣p=(a≠0)是解题的关键.20.(4分)(2021•白银)先化简,再求值:(2﹣)÷,其中x=4.【考点】分式的化简求值.【分析】首先将分式的分子与分母进行分解因式进而化简,再将x的值代入求出答案.【解答】解:原式=(﹣)•=•=﹣,当x=4时,原式=﹣=﹣.【点评】此题主要考查了分式的化简求值,正确分解因式是解题关键.21.(6分)(2021•白银)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法);①作线段AC的垂直平分线DE,分别交于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【考点】数学常识;线段垂直平分线的性质;作图—复杂作图.【分析】(1)①根据要求作出图形即可.②根据要求作出图形即可.(2)证明△DFB≌△DCB可得结论.【解答】解:(1)①如图,直线DE,线段AD,线段CD即为所求.②如图,点F,线段CD,BD,BF即为所求作.(2)结论:BF=BC.理由:∵DE垂直平分线段AC,∴DA=DC,∴∠DAC=∠DCA,∵AD=DF,∴DF=DC,=,∴∠DBC=∠DBF,∵∠DFB+∠DAC=180°.∠DCB+∠DCA=180°,∴∠DFB=∠DCB,在△DFB和△DCB中,,∴△DFB≌△DCB(AAS),∴BF=BC.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,全等三角形的判定和性质,圆周角定理等知识,解题的关键是熟练掌握五种基本作图,正确寻找全等三角形解决问题.22.(6分)(2021•白银)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B在同一条直线上).数据收集:通过实地测量:地面上A,B两点的距离为58m,∠CAD=42°,∠CBD=58°.问题解决:求宝塔CD的高度(结果保留一位小数).参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.根据上述方案及数据,请你完成求解过程.【考点】解直角三角形的应用.【分析】设设CD=xcm,在Rt△ACD中,可得出AD=,在Rt△ACD中,BD=,再由AD+BD=AB,列式计算即可得出答案.【解答】解:设CD=xcm,在Rt△ACD中,AD=,在Rt△ACD中,BD=,∵AD+BD=AB,∴,解得,x≈33.4.答:宝塔的高度约为33.4m.【点评】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.23.(6分)(2021•白银)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).【考点】用样本估计总体;列表法与树状图法;利用频率估计概率.【分析】(1)设白球有x个,根据多次摸球试验后发现,摸到红球的频率稳定在0.75左右可估计摸到红球的概率为0.75,据此利用概率公式列出关于x的方程,解之即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,∴估计摸到红球的概率为0.75,设白球有x个,根据题意,得:=0.75,解得x=1,经检验x=1是分式方程的解,∴估计箱子里白色小球的个数为1;(2)画树状图为:共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,∴两次摸出的小球颜色恰好不同的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.四、解答题:本大题共5小题,共40分。解答时,应写出必要的文字说明、证明过程或演算步骤。24.(7分)(2021•白银)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩xA50≤x<60B60≤x<70C70≤x<80D80≤x<90E90≤x≤100(1)本次调查一共随机抽取了200名学生的成绩,频数分布直方图中m=16;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在C等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?【考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;中位数.【分析】(1)由B等级人数及其所占百分比可得被调查的总人数,总人数乘以A等级对应百分比可得m的值;(2)总人数乘以C等级人数所占百分比求出其人数即可补全图形;(3)根据中位数的定义求解即可;(4)总人数乘以样本中D、E等级人数和所占比例即可.【解答】解:(1)一共调查学生人数为40÷20%=200,A等级人数m=200×8%=16,故答案为:200,16;(2)∵C等级人数为200×25%=50,补全频数分布直方图如下:(3)由于一共有200个数据,其中位数是第100、101个数据的平均数,而第100、101个数据都落在C等级,所以所抽取学生成绩的中位数落在C等级;故答案为:C.(4)估计成绩优秀的学生有2000×=940(人).【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(7分)(2021•白银)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.(1)小刚家与学校的距离为3000m,小刚骑自行车的速度为200m/min;(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;(3)小刚出发35分钟时,他离家有多远?【考点】一次函数的应用.【分析】(1)根据函数图象和题意可以求得小刚家与学校的距离为3000m,小刚骑自行车的速度为200m/min;(2)先求出小刚从图书馆返回家的时间,进而得出总时间,再利用待定系数法即可求出y与x之间的函数关系式;(3)把x=35代入(2)的结论解答即可.【解答】解:(1)由题意得,小刚家与学校的距离为3000m,小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),故答案为:3000;200;(2)小刚从图书馆返回家的时间:5000÷200=25(min),总时间:25+20=45(min),设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,把(20,5000),(45,0)代入得:,解得,∴y=﹣200x+9000(20≤x≤45);(3)小刚出发35分钟时,即当x=35时,y=﹣200×35+9000=2000.答:此时他离家2000m.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用该数形结合的思想和分类讨论的数学思想解答.26.(8分)(2021•白银)如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.【考点】圆周角定理;三角形的外接圆与外心;切线的判定与性质;解直角三角形.【分析】(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;(2)根据平行线分线段成比例定理得到==,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.【解答】(1)证明:∵OA=OC,∴∠OAC=∠OCA,∵∠DCB=∠OAC,∴∠OCA=∠DCB,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCA+∠OCB=90°,∴∠DCB+∠OCB=90°,即∠OCD=90°,∴OC⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵OE∥AC,∴=,∵CD=4,CE=6,∴==,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,∵OC⊥DC,∴△OCD是直角三角形,在Rt△OCD中,OC2+CD2=OD2,∴(3x)2+42=(5x)2,解得,x=1,∴OC=3x=3,即⊙O的半径为3,∵BC∥OE,∴∠OCB=∠EOC,在Rt△OCE中,tan∠EOC===2,∴tan∠OCB=tan∠EOC=2.【点评】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.27.(8分)(2021•白银)问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,∠AED=60°,AE=6,BF=2,求DE的长.【考点】四边形综合题.【分析】(1)根据矩形的性质得∠DAB=∠B=90°,由等角的余角相等可得∠ADE=∠BAF,利用AAS可得△ADE≌△BAF(AAS),由全等三角形的性质得AD=AB,即可得四边形ABCD是正方形;(2)根据矩形的性质得∠DAB=∠ABH=90°,AB=DA,利用SAS可得△DAB≌△ABH(SAS),由全等三角形的性质得AH=DE,由已知DE=AF可得AH=AF,即可得△AHF是等腰三角形;(3)延长CB到点H,使BH=AE=6,连接AH,利用SAS可得△DAE≌△ABH(SAS),由全等三角形的性质得AH=DE,∠AHB=∠DEA=60°,由已知DE=AF可得AH=AF,可得△AHF是等边三角形,则AH=HF=HB+BF=AE+BF=6+2=8,等量代换可得DE=AH=8.【解答】(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠ADE=∠BAF,∵DE=AF,∴△ADE≌△BAF(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;(2)解:△AHF是等腰三角形,理由:∵四边形ABCD是矩形,∴∠DAB=∠ABH=90°,AB=DA,∵BH=AE,∴△DAB≌△ABH(SAS),∴AH=DE,∵DE=AF,∴AH=AF,∴△AHF是等腰三角形;(3)解:延长CB到点H,使BH=AE=6,连接AH,∵四边形ABCD是菱形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD,∵BH=AE,∴△DAE≌△ABH(SAS),∴AH=DE,∠AHB=∠DEA=60°,∵DE=AF,∴AH=AF,∴△AHF是等边三角形,∴AH=HF=HB+BF=AE+BF=6+2=8,∴DE=AH=8.【点评】本题属于四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,等边三角形判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.(10分)(2021•白银)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.(1)求抛物线y=x2+bx+c的表达式;(2)当GF=时,连接BD,求△BDF的面积;(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.【考点】二次函数综合题.【分析】(1)利用待定系数法求解即可.(2)求出点D的坐标,可得结论.(3)①过点H作HM⊥EF于M,证明△EMH≌△FGB(AAS),推出MH=GB,EM=FG,由HM=OG,可得OG=GB=OB=2,由题意直线AB的解析式为y=x﹣2,设E(a,﹣2a+8),F(a,a﹣2),根据MH=BG,构建方程求解,可得结论.②因为△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7,所以要使得△PHB的周长最小,只要PC+PB的值最小,因为PC+PB≥BC,所以当点P在BC上时,PC+PB=BC的值最小.【解答】解:(1)∵抛物线y=x2+bx+c过A(0,﹣2),B(4,0)两点,∴,解得,∴y=x2﹣x﹣2.(2)∵B(4,0),A(0,﹣2),∴OB=4,OA=2,∵GF⊥x轴,OA⊥x轴,在Rt△BOA和Rt△BGF中,tan∠ABO==,即=,∴GB=1,∴OG=OB﹣GB=4﹣1=3,当x=3时,yD=×9﹣×3﹣2=﹣2,∴D(3,﹣2),即GD=2,∴FD=GD﹣GF=2﹣=,∴S△BDF=•DF•BG=××1=.(3)①如图1中,过点H作HM⊥EF于M,∵四边形BEHF是矩形,∴EH∥BF,EH=BF,∴∠HEF=∠BFE,∵∠EMH=∠FGB=90°,∴△EMH≌△FGB(AAS),∴MH=GB,EM=FG,∵HM=OG,∴OG=GB=OB=2,∵A(0,﹣2),B(4,0),∴直线AB的解析式为y=x﹣2,设E(a,﹣2a+8),F(a,a﹣2),由MH=BG得到,a﹣0=4﹣a,∴a=2,∴E(2,4),F(2,﹣1),∴FG=1,∵EM=FG,∴4﹣yH=1,∴yH=1,∴H(0,3).②如图2中,BH===5,∵PH=PC+2,∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7,要使得△PHB的周长最小,只要PC+PB的值最小,∵PC+PB≥BC,∴当点P在BC上时,PC+PB=BC的值最小,∵BC===4,∴△PHB的周长的最小值为4+7.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,全等三角形的判定和性质,矩形的判定和性质,两点之间线段最短等知识,解题的关键是学会寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
立体几何1未命名考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,正方体的棱长为1,线段上有两个动点E,F,且,则三棱锥的体积为(
)A. B. C. D.不确定2.已知在棱长均为的正三棱柱中,点为的中点,若在棱上存在一点,使得平面,则的长度为(
)A. B. C. D.二、多选题3.在四棱锥中,底面是正方形,底面,,截面与直线平行,与交于点,则下列判断正确的是(
)A.为的中点B.与所成的角为C.平面D.三棱锥与四棱锥的体积之比等于4.已知平行六面体的所有棱长都为1,顶点在底面上的射影为,若,则(
)A. B.与所成角为C.O是底面的中心 D.与平面所成角为第II卷(非选择题)请点击修改第II卷的文字说明三、填空题5.如图,在长方体中,,则二面角的大小为______.四、解答题6.如图,在三棱锥中,,为的中点.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.7.如图,在四棱锥中,四边形为梯形,,,(1)若为中点,证明:面(2)若点在面上投影在线段上,,证明:面.8.如图,已知平面.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的大小.9.如图在四棱锥P-ABCD中,底面ABCD是矩形,点E,F分别是棱PC和PD的中点.(1)求证:EF∥平面PAB;(2)若AP=AD,且平面PAD⊥平面ABCD,证明AF⊥平面PCD.第43页(共43页)参考答案:1.A【解析】【分析】根据题意可知平面,而,在线段上运动,则平面,从而得出点到直线的距离不变,求出的面积,再根据线面垂直的判定定理可证出平面,得出点到平面的距离为,最后利用棱锥的体积公式求出三棱锥的体积.【详解】解:由题可知,正方体的棱长为1,则平面,又,在线段上运动,平面,点到直线的距离不变,由正方体的性质可知平面,则,而,,故的面积为,又由正方体可知,,,且,平面,则平面,设与交于点,则平面,点到平面的距离为,.故选:A.2.B【解析】设点为的中点,取的中点,连接,,然后证明平面即可.【详解】如图,设点为的中点,取的中点,连接,,则,又平面,平面,∴平面,易知,故平面与平面是同一个平面,∴平面,此时,故选:B3.ACD【解析】【分析】在A中,连结,交于点,连结,则平面平面,推导出,由四边形是正方形,从而,进而;在B中,由,得(或其补角)为与所成角,推导出,从而与所成角为;在C中,推导出,,由此能证明平面;在D中,设,则,.由此能求出三棱锥与四棱锥的体积之比等于.【详解】解:在A中,连结,交于点,连结,则平面平面,∵平面,平面,∴,∵四边形是正方形,∴,∴,故A正确;在B中,∵,∴(或其补角)为与所成角,∵平面,平面,∴,在中,,∴,∴与所成角为,故B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影院改造工程合同范例
- 陕西航空职业技术学院《绿色建筑设计原理》2023-2024学年第一学期期末试卷
- 陕西国际商贸学院《楷书创作》2023-2024学年第一学期期末试卷
- 收益分成合同范例
- 物流货物赔偿合同范例
- 2024年水利工程建设项目施工合同履约担保服务条款2篇
- 齿轮销合同范例
- 河北工业用地租赁合同范例
- 光伏发电找地合同范例
- 2024年危险化学品驾驶员劳动合同绩效考核标准3篇
- 北京市2022-2023学年七年级上学期语文期末试卷(含答案)
- 电缆放线施工方案
- 2023-2024年新人教版pep六年级英语上册试卷全套含答案
- 股静脉穿刺血标本采集技术操作规程及评分标准
- 幼儿园天气播报PPT
- 化工传递过程基础全部
- WS 400-2023 血液运输标准
- 教师教姿教态课件
- 2023年苏州外国语学校自主招生英语试卷
- 村干部法律培训课件
- 教育戏剧:实践指南与课程计划
评论
0/150
提交评论