下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(且)的图象可能为()A. B. C. D.2.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72 B.64 C.48 D.323.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是()A. B. C. D.4.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.5.设是等差数列的前n项和,且,则()A. B. C.1 D.26.空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上(指数)的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好7.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.8.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()A.-1 B.1 C.0 D.29.若平面向量,满足,则的最大值为()A. B. C. D.10.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.11.已知满足,则()A. B. C. D.12.已知双曲线()的渐近线方程为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.14.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)15.已知数列为正项等比数列,,则的最小值为________.16.若,则=____,=___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.18.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.(1)设直线,的斜率分别为,,求证:常数;(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;②当的内切圆的面积为时,求直线的方程.19.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.20.(12分)第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.参考公式:,其中.下面的临界值表仅供参考21.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.22.(10分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.2.B【答案解析】
由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【题目详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【答案点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。3.B【答案解析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【题目详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【答案点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.4.C【答案解析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【题目详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【答案点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.5.C【答案解析】
利用等差数列的性质化简已知条件,求得的值.【题目详解】由于等差数列满足,所以,,.故选:C【答案点睛】本小题主要考查等差数列的性质,属于基础题.6.C【答案解析】
结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【题目详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【答案点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.7.B【答案解析】
根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【题目详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【答案点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.8.B【答案解析】
化简得到z=a-1+a+1【题目详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0故选:B.【答案点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.9.C【答案解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【题目详解】由题意可得:,,,故选:C【答案点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.10.D【答案解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【题目详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【答案点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.11.A【答案解析】
利用两角和与差的余弦公式展开计算可得结果.【题目详解】,.故选:A.【答案点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.12.A【答案解析】
根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.【题目详解】因为双曲线(),所以,又因为渐近线方程为,所以,所以.故选:A.【答案点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
转化()为,即得解.【题目详解】由题意:().故答案为:【答案点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.14.>【答案解析】
根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【题目详解】,故.,.要比较的大小,只需比较与,两者作差并化简得①,由于为互不相等的正实数,故,也即,也即.故答案为:【答案点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.15.27【答案解析】
利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.【题目详解】由等比数列的性质可知,则,.当且仅当时取得最小值.故答案为:.【答案点睛】本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.16.12821【答案解析】
令,求得的值.利用展开式的通项公式,求得的值.【题目详解】令,得.展开式的通项公式为,当时,为,即.【答案点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)或.【答案解析】
(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【题目详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.【答案点睛】本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.18.(1)证明见解析;(2)①;②.【答案解析】
(1)设过的直线交抛物线于,,联立,利用直线的斜率公式和韦达定理表示出,化简即可;(2)由(1)知点在轴上,故,设出直线方程,求出交点坐标,因为内心到三角形各边的距离相等且均为内切圆半径,列出方程组求解即可.【题目详解】(1)设过的直线交抛物线于,,联立方程组,得:.于是,有:,又,;(2)①由(1)知点在轴上,故,联立的直线方程:.,又点在抛物线上,得,又,;②由题得,(解法一)所以直线的方程为(解法二)设内切圆半径为,则.设直线的斜率为,则:直线的方程为:代入直线的直线方程,可得于是有:得,又由(1)可设内切圆的圆心为则,即:,解得:所以,直线的方程为:.【答案点睛】本题主要考查了抛物线的性质,直线与抛物线相关的综合问题的求解,考查了学生的运算求解与逻辑推理能力.19.(1)见解析;(2).【答案解析】
(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【题目详解】(1)证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,所以平面.又,所以平面.因为平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以为坐标原点,建立如图所示空间直角坐标系.则.于是,,.设面的一个法向量,由得令,则,即.设,易得,.设面的一个法向量,由得令,则,,即.依题意,即,令,则,即,即.所以.【答案点睛】本题考查了空间向量和立体几何综合,考查了面面垂直的判断,二面角的向量求解,三棱锥的体积等知识点,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.20.(1)有的把握认为居民分类意识强与政府宣传普及工作有很大关系.见解析(2)分布列见解析,期望为1.【答案解析】
(1)由在抽取的户居民中随机抽取户,抽到分类意识强的概率为可得列联表,然后计算后可得结论;(2)由已知的取值分别为,分别计算概率得分布列,由公式计算出期望.【题目详解】解:(1)根据在抽取的户居民中随机抽取户,到分类意识强的概率为,可得分类意识强的有户,故可得列联表如下:分类意识强分类意识弱合计试点后试点前合计因为的观测值,所以有的把握认为居民分类意识强与政府宣传普及工作有很大关系.(2)现在从试点前分类意识强的户居民中,选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,则0,1,2,3,故,,,,则的分布列为.【答案点睛】本题考查独立性检验,考查随机变量的概率分布列和数学期望.考查学生的数据处理能力和运算求解能力.21.(1)(2)证明见解析【答案解析】
(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版销售代表合同合同模板版B版
- 2024年私人车位租赁协议书
- 《无线体域网动态口令认证协议的安全性研究》
- 《海印地产信托受益权资产证券化案例分析》
- 2025餐饮经营承包合同
- 2025公司跟法人的借款合同标准模板
- 2024年电子病历系统开发合同
- 2025道路施工承包合同模板
- 2024年离婚协议书起草与审查专业服务合同3篇
- 2024年度跨境电商物流居间服务合同6篇
- 2019版外研社高中英语选择性必修一~四单词总表
- 郴州市届高三第一次教学质量监测质量分析报告(总)
- 2022年最全工厂供电试题考试题习题库及参考答案
- 消毒供应室护理质量考核评分标准
- 汽车理论期末考试试题及其答案(二)
- 合理用药检查表(共4页)
- 日本专利法中文版
- 表冷器性能计算书
- 中压蒸汽管道项目可行性研究报告写作范文
- 施工进度计划(横道图-)
- 汉字的演变完美版.ppt
评论
0/150
提交评论