版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PrinciplesofCommunications1PrinciplesofCommunications1Chapter1Introduction1.1HistoricalReviewofCommunicationOriginofancientcommunicationTwomodesofcommunicationDevelopmentofmoderncommunication2Chapter1Introduction21.2Message,information&signalMessage:speech,letters,figures,images…Information:effectivecontentofmessage.DifferenttypesofmessagesmaycontainthesameinformationSignal:thecarrierofmessage Whattransmittedinacommunicationsystemissignal. 31.2Message,information&sigMeasurementofinformation: #“quantityofmessage”informationcontent #Ex:“Rainfallwillbe1mmtomorrow”–informationcontentsmall
“Rainfallwillbe1mtomorrow”–informationcontentlarge “Thesunwillriseintheeasttomorrowmorning”–informationcontentequalszero
#Informationcontent
I=I[P(x)],P(x)–Occurrenceprobability
#Definition:I=loga
[1/P(x)]=-logaP(x)
#Usually,set
a=2,theunitoftheinformationcontentwillbecalledabit.
#Foranequalprobabilitybinarysymbol:
I=log2[1/P(x)]=log2[1/(1/2)]=1bit4Measurementofinformation:4#ForanequalprobabilityM-arysymbol:
I=log2[1/P(x)]=log2[1/(1/M)] =log2
M bit
If
M=2k,then
I=kbit5#ForanequalprobabilityM-a1.3DigitalCommunication 1.3.1BasicconceptTwocategoriesofsignals
Analogsignal:Itsvoltageorcurrentcanbeexpressedbyacontinuousfunctionoftime.Forexample,speechsignal.
Digitalsignal:Itsvoltageorcurrentcanonlytakefinitenumberofdiscretevalues.Forexample,digitalcomputerdatasignal.61.3DigitalCommunication6AnalogSignal&DigitalSignalAnalogsignalsDigitalsignalsts(t)ts(t)s(t)tSymbolts(t)7AnalogSignal&DigitalSignalTwokindsofcommunicationsystems
Analogcommunicationsystem Requirement-Highfidelity Criterion-Signaltonoiseratio Basicissue-parameterestimation Digitalcommunicationsystem Requirement-correctdecision Criterion-Errorprobability Basicissur-statisticaldecisiontheory8Twokindsofcommunicationsys1.3.2AdvantagesofDigitalCommunicationFinitenumberofpossiblevaluesofsignalsCorrectdecisionmaybeachieved
Fig.1.3.2Distortionandrestorationofdigitalsignalwaveforms(a)Waveformsofdistoreddigitalsignal(b)Waveformsofdigitalsignalaftershaping91.3.2AdvantagesofDigitalCoErrorcorrectingtechniquescanbeused.Digitalencryptioncanbeused.Differentkindsofanalog&digitalmessagecanbeintegratedtotransmitDigitalcommunicationequipment:DesignandmanufactureareeasierWeight&volumearesmallerDigitalsignalcanbecompressedbysourcecodingtoreduceredundency.OutputS/Nincreaseswithbandwidthaccordingtoexponentiallaw.10ErrorcorrectingtechniquescaDigitalcommunicationsystemmodelTransmitterReceiverInformationsourceChannelcodingModulationChannelCompressioncodingDemodulationInformationdestinationEncryptiondecodingChanneldecodingCompressiondecodingEncryptioncodingNoiseSynchro-nizationSourcecodingSourcedecoding1.3.3DigitalCommunicationSystemModel11DigitalcommunicationsystemmAnalogcommunicationsystemmodelTransmitterReceiverNoiseModulationChannelDemodulationInformationdestinationInformationsource12Analogcommunicationsystemmo1.3.4SpecificationsofDigitalCommunicationSystemsRelationshipbetweenefficiency&reliability(rate~accuracy)Transmissionrate:Symbolrate:RB-BaudInformationrate:Rb-bit/second ForM-arysystem:Rb=RBlog2
MMessagerate:RM Errorprobability:SymbolerrorprobabilityPe
=numberofreceivedsymbolsinerror/totalnumberoftransmittedsymbols131.3.4SpecificationsofDigitaBiterrorprobabilityPb=numberofreceivedbitsinerror/totalnumberoftransmittedbitsWorderrorprobabilityPw=numberofreceivedwordsinerror/totalnumberoftransmittedwordsRelationshipbetweensymbolerrorprobabilityandbiterrorprobabilityPb=PexM/[2(M-1)]Pe/214BiterrorprobabilityPb=numRelationshipbetweenworderrorprobabilityandbiterrorprobability Forbinarysystem, Ifawordisconsistedofkbits,then Pw=1–(1–Pe)k
UtilizationfactoroffrequencybandUtilizaitionfactorofenergy15Relationshipbetweenworderro1.4Channel
1.4.1WirelesschannelOriginofwirelesscommunicationRequirementofelectromagneticwaveemissiononwavelengthDivisionoffrequencyband(wavelength)161.4Channel 16Divisionoffrequencyband
Frequency
Name Typicalapplication
band(kHz)3–30VerylowfrequencyLong-distancenavigation, (VLF) Underwatercomm.Sonar30–300Lowfrequency Navigation,underwatercomm. (LF) radiobeaconing300–3000 MediumfrequencyBroadcasting,maritimecomm. (MF) direction-finding,distress calling,coastguard17DivisionoffrequencybandFreDivisionoffrequencyband
Frequency
Name Typicalapplication
band(MHz)3–30 Highfrequency Long-distancebroadcasting,telegraph, (HF) telephone,fax,searchandlifesaving, comm.betweenaircrafts&ships,and betweenship&coast,amateurradio 30–300 VeryhighfrequencyTV,FMbroadcasting,landtraffic,air (VHF) traffic,control,taxi,police,navigation, aircraftcommunication300–3000 Ultrahighfrequency TV,cellularphonenetwork,microwave (UHF) link,,radiosounding,navigation, satellitecommunication,GPS, surveillanceradar,radioaltimeter18DivisionoffrequencybandFreDivisionoffrequencyband
Frequency Name Typicalapplicationband(GHz)3–30SuperhighfrequencySatellitecomm.,radioaltimeter, (SHF) microwavelink,aircraftradar, meteorologicalradar,public landvehiclecommunication30–300 Extremelyhigh Radarlandingsystem,satellite frequency(EHF) comm.,vehiclecomm.,railway traffic300–3000 Submillimeterwave Experiment,notdesignated (0.1–1mm)19DivisionoffrequencybandFreDivisionoffrequencyband
Frequency Name Typicalapplicationband(THz)
43–430 Infrared
Opticalcommunication
(7–0.7m)
430–750Visiblelight
Opticalcommunication
(0.7–0.4m)
750–3000 Ultraviolet Opticalcommunication (0.4–0.1m)Note:kHz=103Hz,MHz=106Hz,GHz=109Hz, THz=1012Hz,mm=10-3m,m=10-6m20DivisionoffrequencybandFreGroundwaveFrequency:below2MHzDiffraction:Propagationdistance:hundredstothousandsofkmGroundsurface21GroundwaveFrequency:below2MHDlayer:60~80kmElayer:100~120kmFlayer:150~400kmF1layer:140~200kmF2layer:250~400kmAtnight:Dlayer:disappearsF1layer:disappears
(Or,F1andF2arecombinedasFlayer)
IonosphereStructureDEFF2F1Groundsurface22Dlayer:60~80kmIonosphereSky-waveIonosphereHeight:60~400kmOpagationdistance:4000kmPropagationdistancebymulti-hops:>10000kmFrequency:2~30MHzFigure1.4.2Sky-wavepropagationPropagationpathofsignalTransmittingantenna
Receivngantenna
IonosphereGround23Sky-waveFigure1.4.2Sky-waveddDhrReceivingantennaTransmittingantennaGroundSignalPropagationFrequency:>30MHzPropagationdistance:d2+r2=(h+r)2, or
h
D2/50(m)whereD-kmLine-of-sightpropagationFigure1.4.3Line-of-sightpropagation24ddDhrReceivingantennaTransmitRadiorelayFigure1.4.4RadiorelayTransmittingantennaReceivingantenna25RadiorelayFigure1.4.4RadioGeostationarysatelliteequator26GeostationarysatelliteequatorStratospherecommunicationHAPS(HighAltitudePlatformStation)27StratospherecommunicationHAPSAttenuation
(dB/km)VaporOxygenFrequency(GHz)(a)Attenuationofoxygen&vapor(concentration7.5g/m3)Attenuation(dB/km)RainfallrateFrequency(GHz)(b)AttenuationofrainfallFigure1.4.5AtmosphereattenuationAtmosphereattenuation28Attenuation(dB/km)VaporOxygenEffectivescatteringregionTransmittingantennaEarthReceivingantennaFigure1.4.6TropospherescatteringcommunicationScattercommunicationIonospherescatteringFrequency:30~60MHzTropospherescatteringFrequency:100~4000MHzMeteor-tailscatteringFrequency:30~100MHzGroundFigure1.4.7Meteor-tailscatteringcommunication29EffectivescatteringregionTra1.4.2WiredchannelOpenwiresSymmetricalcablesCoaxialcablesFig.1.4.8301.4.2WiredchannelFig.1.4.83Table1.4.3GeneralelectricalcharacteristicsofwiredchannelsKindsofchannelCommunicationcapacity(channels)Frequencyrange(kHz)Transmissiondistance(km)Openwire1+303.~27300Openwire1+3+120.3~150120Symmetricalcable2412~10835Symmetricalcable6012~25212~18Smallcoaxialcable30060~13008Smallcoaxialcable96060~41004Mediumcoaxialcable1800300~9,0006Mediumcoaxialcable2700300~12,0004.5Mediumcoaxialcable10800300~60,0001.531Table1.4.3GeneralelectricalOpticalfiberStructureFigure1.4.9SketchofthestructureofmultimodeopticalfibersReflectionindexn2n1(Cladding)(Core)Multimodegraded-indexopticalfiber(Cladding)Multimodestep-indexopticalfiberReflectionindexn2n1(Core)2a32OpticalfiberFigure1.4.9SketTransmissionlossFigure1.4.10Relationshipbetweenlossandwavelength1.55m0.7 0,9 1.1 1.3 1.5 1.7Wavelengthoflightwaves(m)Loss(dB/km)1.31m33TransmissionlossFigure.3ChannelmodelsModulationchannelmodel:
eo(t)=f[ei(t)]+n(t)式中ei(t)-inputsignal
eo(t)-outputsignal
n(t)-additivenoise
f[ei(t)]-functionrelatinginputandoutputsignalsei(t)eo(t)Time-variantlinearnetwork341.4.3Channelmodelsei(t)eo(t)Usually,assumef[ei(t)]canbeexpressedask(t)ei(t) So,
eo(t)=k(t)ei(t)+n(t)wherek(t)iscalledmultiplicativeinterference,andisacomplicatedfunctionwhichreflectsthecharacteristicsofthechannel. Inthesimplestcondition:k(t)=const.,expressingattenuation. Whenk(t)=const.,itisaconstantparameterchannel. Forexample,coaxialcable.
Whenk(t)const.,itiscalledarandomparameterchannel. Forexample,vehicalcellularnetworkcommunicationchannel.35Usually,assumef[ei(t)]canCodingchannelmodel:Binarycodingchannelmodelwhere,P(0/0),P(1/1)-corrrecttransferprobabilities
P(0/1),P(1/0)-errortransferprobabilities
P(0/0)=1-P(1/0)
P(1/1)=1-P(0/1)0110P(0/0)P(0/1)P(1/1)P(1/0)36Codingchannelmodel:0110P(0/0012332104-arycodingchannelmodel
TransmittingendReceivingendFigure1.4.124-arycodingchannelmodel37012332104-arycodingchannelm1.4.4InfluenceofchannelcharacteristicsonsignaltransmissionConstantparameterchannel~time-invariantlinearnetworkLink:asegmentofphysicallinewherenoexchangeexistsAmplitude~frequencycharacteristics:Attenuation(dB)TypicalcharacteristicofatelephonechannelIdealcharacteristicf(Hz)30030000381.4.4InfluenceofchannelchaCompensationoffrequencydistortion0Af(a)Channelcharacteristicwithfrequencydistortion0Af(b)Characteristicoflinearcompensationnetwork0Af(c)Channelcharacteristicaftercompensation39CompensationoffrequencydistPhase~frequencycharacteristics:Idealcharacteristic:phase---()=k; groupdelay---()=d()/d=k Influenceofdistortion:waveformdistortion,inter-symbolinterferenceLineardistortionincludingfrequencydistortion&phasedistortioncanbecorrectedbylinearcompensationnetwork.Nonlineardistortion:nonlinearamplitudecharacteristic,frequencydeviation,phasejittering,…0ω()Idealcharacteristic()0Idealcharacteristic40Phase~frequencycharacteristRandomparameterchannelCommoncharacteristics-attenuation:varyingwithtime transmissiondelay:varyingwithtime multi-pathpropagation:fastfadingCharacteristicsofreceivedsignal:
LettransmittingsignalbeAcos0t,aftertransmissionthroughnpaths,thereceivedsignalR(t)canbeexpressedas:
whereri(t)-amplitudeofreceivedsignalpassingoveri-thpath i(t)-delayofthereceivedsignalpassingoveri-thpath i(t)=-0i(t) Xc(t) Xs(t)41Randomparameterchannel41where V(t)-envelopeofthereceivedsignalR(t)
(t)-phaseofthereceivedsignalR(t)i.e.,Becauseri(t)andi(t)areslowlyvaried,ri(t)andi(t)arealsoslowlyvaried.Hence,Xc(t),Xs(t)andV(t),(t)arealsoslowlyvaried.Hence,R(t)canbeconsideredanarrowbandsignal(randomprocess).4242ItcanbeseenfromthefollowingequationAftertransmission,thetransmittingsignalAcos0t:
*amplitudeAbecomesslowlyvariedamplitudeV(t); *phase0becomesslowlyvariedphase(t); *spectrumbecomesnarrowbandspectrumfromsinglefrequency.tff043ItcanbeseenfromthefollowFrequencyselectivefadingAssume:thereareonlytwopathswithidenticalattenuationanddifferentdelays,Transmittingsignalisf(t),receivedsignalsareaf(t-0)andaf(t-0-);spectrumoftransmittingsignalisF()。then f(t)F()
af(t
-0)aF()e-j0
af(t
-0-)a
F()e-j(0+)
af(t
-0)
+af(t
-0-)aF()e-j0(1+e-j)
H()=aF()e-j0(1+e-j)/F()=ae-j0(1+e-j) |1+e-j|=|1+cos-jsin|=|[(1+cos)2+sin2]1/2| =2|cos(/2)|3categoriesofsignal:
*deterministicsignal *randomphasesignal *fluctuationsignal44Frequencyselectivefading441.5NoiseinChannelClassifiedaccordingtoorigins:Man-madenoise:electricsparks,…Naturalnoise:lightning,atmospherenoies,thermalnoise,...Classifiedaccordingtocharacteristics:
impulsenoisenarrowbandnoisefluctuationnoiseMainnoiseinvolvedinthefollowingdiscussiononcommunicationsystemsis: whitenoise–thermalnoiseisakindoftypicalwhitenoise1.6BriefSummary451.5NoiseinChannelClassifiedPrinciplesofCommunications46PrinciplesofCommunications1Chapter1Introduction1.1HistoricalReviewofCommunicationOriginofancientcommunicationTwomodesofcommunicationDevelopmentofmoderncommunication47Chapter1Introduction21.2Message,information&signalMessage:speech,letters,figures,images…Information:effectivecontentofmessage.DifferenttypesofmessagesmaycontainthesameinformationSignal:thecarrierofmessage Whattransmittedinacommunicationsystemissignal. 481.2Message,information&sigMeasurementofinformation: #“quantityofmessage”informationcontent #Ex:“Rainfallwillbe1mmtomorrow”–informationcontentsmall
“Rainfallwillbe1mtomorrow”–informationcontentlarge “Thesunwillriseintheeasttomorrowmorning”–informationcontentequalszero
#Informationcontent
I=I[P(x)],P(x)–Occurrenceprobability
#Definition:I=loga
[1/P(x)]=-logaP(x)
#Usually,set
a=2,theunitoftheinformationcontentwillbecalledabit.
#Foranequalprobabilitybinarysymbol:
I=log2[1/P(x)]=log2[1/(1/2)]=1bit49Measurementofinformation:4#ForanequalprobabilityM-arysymbol:
I=log2[1/P(x)]=log2[1/(1/M)] =log2
M bit
If
M=2k,then
I=kbit50#ForanequalprobabilityM-a1.3DigitalCommunication 1.3.1BasicconceptTwocategoriesofsignals
Analogsignal:Itsvoltageorcurrentcanbeexpressedbyacontinuousfunctionoftime.Forexample,speechsignal.
Digitalsignal:Itsvoltageorcurrentcanonlytakefinitenumberofdiscretevalues.Forexample,digitalcomputerdatasignal.511.3DigitalCommunication6AnalogSignal&DigitalSignalAnalogsignalsDigitalsignalsts(t)ts(t)s(t)tSymbolts(t)52AnalogSignal&DigitalSignalTwokindsofcommunicationsystems
Analogcommunicationsystem Requirement-Highfidelity Criterion-Signaltonoiseratio Basicissue-parameterestimation Digitalcommunicationsystem Requirement-correctdecision Criterion-Errorprobability Basicissur-statisticaldecisiontheory53Twokindsofcommunicationsys1.3.2AdvantagesofDigitalCommunicationFinitenumberofpossiblevaluesofsignalsCorrectdecisionmaybeachieved
Fig.1.3.2Distortionandrestorationofdigitalsignalwaveforms(a)Waveformsofdistoreddigitalsignal(b)Waveformsofdigitalsignalaftershaping541.3.2AdvantagesofDigitalCoErrorcorrectingtechniquescanbeused.Digitalencryptioncanbeused.Differentkindsofanalog&digitalmessagecanbeintegratedtotransmitDigitalcommunicationequipment:DesignandmanufactureareeasierWeight&volumearesmallerDigitalsignalcanbecompressedbysourcecodingtoreduceredundency.OutputS/Nincreaseswithbandwidthaccordingtoexponentiallaw.55ErrorcorrectingtechniquescaDigitalcommunicationsystemmodelTransmitterReceiverInformationsourceChannelcodingModulationChannelCompressioncodingDemodulationInformationdestinationEncryptiondecodingChanneldecodingCompressiondecodingEncryptioncodingNoiseSynchro-nizationSourcecodingSourcedecoding1.3.3DigitalCommunicationSystemModel56DigitalcommunicationsystemmAnalogcommunicationsystemmodelTransmitterReceiverNoiseModulationChannelDemodulationInformationdestinationInformationsource57Analogcommunicationsystemmo1.3.4SpecificationsofDigitalCommunicationSystemsRelationshipbetweenefficiency&reliability(rate~accuracy)Transmissionrate:Symbolrate:RB-BaudInformationrate:Rb-bit/second ForM-arysystem:Rb=RBlog2
MMessagerate:RM Errorprobability:SymbolerrorprobabilityPe
=numberofreceivedsymbolsinerror/totalnumberoftransmittedsymbols581.3.4SpecificationsofDigitaBiterrorprobabilityPb=numberofreceivedbitsinerror/totalnumberoftransmittedbitsWorderrorprobabilityPw=numberofreceivedwordsinerror/totalnumberoftransmittedwordsRelationshipbetweensymbolerrorprobabilityandbiterrorprobabilityPb=PexM/[2(M-1)]Pe/259BiterrorprobabilityPb=numRelationshipbetweenworderrorprobabilityandbiterrorprobability Forbinarysystem, Ifawordisconsistedofkbits,then Pw=1–(1–Pe)k
UtilizationfactoroffrequencybandUtilizaitionfactorofenergy60Relationshipbetweenworderro1.4Channel
1.4.1WirelesschannelOriginofwirelesscommunicationRequirementofelectromagneticwaveemissiononwavelengthDivisionoffrequencyband(wavelength)611.4Channel 16Divisionoffrequencyband
Frequency
Name Typicalapplication
band(kHz)3–30VerylowfrequencyLong-distancenavigation, (VLF) Underwatercomm.Sonar30–300Lowfrequency Navigation,underwatercomm. (LF) radiobeaconing300–3000 MediumfrequencyBroadcasting,maritimecomm. (MF) direction-finding,distress calling,coastguard62DivisionoffrequencybandFreDivisionoffrequencyband
Frequency
Name Typicalapplication
band(MHz)3–30 Highfrequency Long-distancebroadcasting,telegraph, (HF) telephone,fax,searchandlifesaving, comm.betweenaircrafts&ships,and betweenship&coast,amateurradio 30–300 VeryhighfrequencyTV,FMbroadcasting,landtraffic,air (VHF) traffic,control,taxi,police,navigation, aircraftcommunication300–3000 Ultrahighfrequency TV,cellularphonenetwork,microwave (UHF) link,,radiosounding,navigation, satellitecommunication,GPS, surveillanceradar,radioaltimeter63DivisionoffrequencybandFreDivisionoffrequencyband
Frequency Name Typicalapplicationband(GHz)3–30SuperhighfrequencySatellitecomm.,radioaltimeter, (SHF) microwavelink,aircraftradar, meteorologicalradar,public landvehiclecommunication30–300 Extremelyhigh Radarlandingsystem,satellite frequency(EHF) comm.,vehiclecomm.,railway traffic300–3000 Submillimeterwave Experiment,notdesignated (0.1–1mm)64DivisionoffrequencybandFreDivisionoffrequencyband
Frequency Name Typicalapplicationband(THz)
43–430 Infrared
Opticalcommunication
(7–0.7m)
430–750Visiblelight
Opticalcommunication
(0.7–0.4m)
750–3000 Ultraviolet Opticalcommunication (0.4–0.1m)Note:kHz=103Hz,MHz=106Hz,GHz=109Hz, THz=1012Hz,mm=10-3m,m=10-6m65DivisionoffrequencybandFreGroundwaveFrequency:below2MHzDiffraction:Propagationdistance:hundredstothousandsofkmGroundsurface66GroundwaveFrequency:below2MHDlayer:60~80kmElayer:100~120kmFlayer:150~400kmF1layer:140~200kmF2layer:250~400kmAtnight:Dlayer:disappearsF1layer:disappears
(Or,F1andF2arecombinedasFlayer)
IonosphereStructureDEFF2F1Groundsurface67Dlayer:60~80kmIonosphereSky-waveIonosphereHeight:60~400kmOpagationdistance:4000kmPropagationdistancebymulti-hops:>10000kmFrequency:2~30MHzFigure1.4.2Sky-wavepropagationPropagationpathofsignalTransmittingantenna
Receivngantenna
IonosphereGround68Sky-waveFigure1.4.2Sky-waveddDhrReceivingantennaTransmittingantennaGroundSignalPropagationFrequency:>30MHzPropagationdistance:d2+r2=(h+r)2, or
h
D2/50(m)whereD-kmLine-of-sightpropagationFigure1.4.3Line-of-sightpropagation69ddDhrReceivingantennaTransmitRadiorelayFigure1.4.4RadiorelayTransmittingantennaReceivingantenna70RadiorelayFigure1.4.4RadioGeostationarysatelliteequator71GeostationarysatelliteequatorStratospherecommunicationHAPS(HighAltitudePlatformStation)72StratospherecommunicationHAPSAttenuation
(dB/km)VaporOxygenFrequency(GHz)(a)Attenuationofoxygen&vapor(concentration7.5g/m3)Attenuation(dB/km)RainfallrateFrequency(GHz)(b)AttenuationofrainfallFigure1.4.5AtmosphereattenuationAtmosphereattenuation73Attenuation(dB/km)VaporOxygenEffectivescatteringregionTransmittingantennaEarthReceivingantennaFigure1.4.6TropospherescatteringcommunicationScattercommunicationIonospherescatteringFrequency:30~60MHzTropospherescatteringFrequency:100~4000MHzMeteor-tailscatteringFrequency:30~100MHzGroundFigure1.4.7Meteor-tailscatteringcommunication74EffectivescatteringregionTra1.4.2WiredchannelOpenwiresSymmetricalcablesCoaxialcablesFig.1.4.8751.4.2WiredchannelFig.1.4.83Table1.4.3GeneralelectricalcharacteristicsofwiredchannelsKindsofchannelCommunicationcapacity(channels)Frequencyrange(kHz)Transmissiondistance(km)Openwire1+303.~27300Openwire1+3+120.3~150120Symmetricalcable2412~10835Symmetricalcable6012~25212~18Smallcoaxialcable30060~13008Smallcoaxialcable96060~41004Mediumcoaxialcable1800300~9,0006Mediumcoaxialcable2700300~12,0004.5Mediumcoaxialcable10800300~60,0001.576Table1.4.3GeneralelectricalOpticalfiberStructureFigure1.4.9SketchofthestructureofmultimodeopticalfibersReflectionindexn2n1(Cladding)(Core)Multimodegraded-indexopticalfiber(Cladding)Multimodestep-indexopticalfiberReflectionindexn2n1(Core)2a77OpticalfiberFigure1.4.9SketTransmissionlossFigure1.4.10Relationshipbetweenlossandwavelength1.55m0.7 0,9 1.1 1.3 1.5 1.7Wavelengthoflightwaves(m)Loss(dB/km)1.31m78TransmissionlossFigure.3ChannelmodelsModulationchannelmodel:
eo(t)=f[ei(t)]+n(t)式中ei(t)-inputsignal
eo(t)-outputsignal
n(t)-additivenoise
f[ei(t)]-functionrelatinginputandoutputsignalsei(t)eo(t)Time-variantlinearnetwork791.4.3Channelmodelsei(t)eo(t)Usually,assumef[ei(t)]canbeexpressedask(t)ei(t) So,
eo(t)=k(t)ei(t)+n(t)wherek(t)iscalledmultiplicativeinterference,andisacomplicatedfunctionwhichreflectsthecharacteristicsofthechannel. Inthesimplestcondition:k(t)=const.,expressingattenuation. Whenk(t)=const.,itisaconstantparameterchannel. Forexample,coaxialcable.
Whenk(t)const.,itiscalledarandomparameterchannel. Forexample,vehicalcellularnetworkcommunicationchannel.80Usually,assumef[ei(t)]canCodingchannelmodel:Binarycodingchannelmodelwhere,P(0/0),P(1/1)-corrrecttransferprobabilities
P(0/1),P(1/0)-errortransferprobabilities
P(0/0)=1-P(1/0)
P(1/1)=1-P(0/1)0110P(0/0)P(0/1)P(1/1)P(1/0)81Codingchannelmodel:0110P(0/0012332104-arycodingchannelmodel
TransmittingendReceivingendFigure1.4.124-arycodingchannelmodel82012332104-arycodingchannelm1.4.4InfluenceofchannelcharacteristicsonsignaltransmissionConstantparameterchannel~time-invariantlinearnetworkLink:asegmentofphysicallinewh
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钻井课程设计 长江大学
- 速写动漫课程设计
- 终端变电站课程设计
- 菜园主题活动课程设计
- 豆腐压制机课程设计
- MOOC课程设计改进措施研究
- 预产期课程设计
- 销售合伙人培训课程设计
- 通信专业课课程设计
- 高电压课程设计答辩
- 2024年安全教育培训试题附完整答案(夺冠系列)
- 化学-山东省潍坊市、临沂市2024-2025学年度2025届高三上学期期末质量检测试题和答案
- 领导学 课件全套 孙健 第1-9章 领导要素- 领导力开发
- 文化资本与民族认同建构-洞察分析
- 2025新译林版英语七年级下单词默写表
- 2024年私募基金争议解决研究报告之一:私募基金管理人谨慎勤勉义务之边界探析-国枫研究院
- 物业客服服务技巧培训
- 环卫设施设备更新实施方案
- 招聘技巧的培训
- 北师大版一年级上册数学全册教案(教学设计)及教学反思
- 福建省公路水运工程试验检测费用参考指标
评论
0/150
提交评论