版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit1MathematicsUnit1Mathematics1Warming-upMathematicshasawideapplication,suchascomputer,economy.Nowithasbeenbroadentheoreticallyandappliedtomanysocialproblems.Ithasdrivenarevolutionineconomictheory.Ithasalsofoundapplicationinsociologyandpsychology,andestablishedlinkswithevolutionandbiology.OnesignificantapplicationisGameTheorywhichreceivedspecialattentionwiththeawardingoftheNobelPrizeineconomicstoJohnNash.Warming-upMathematicshasawi2TextAGameTheory博弈论TextAGameTheory3GameTheoryGametheoryisthemathematicalanalysisofanysituationinvolvingaconflictofinterest,withtheintentofindicatingtheoptimalchoicesthat,undergivenconditions,willleadtoadesiredoutcome.
GameTheoryGametheoryisthe4Itattemptstodeterminemathematicallyandlogically
theactionsthat“players”shouldtaketosecurethebestoutcomesforthemselvesinawidearrayof“games”.它试图以数学和逻辑的方法帮助博弈者作出决策,使他们在一系列纷繁复杂的博弈中保证利益的最大化。
Itattemptstodeterminemathe5zero-sumgamesIngametheoryandeconomictheory,zero-sumdescribesasituationinwhichaparticipant'sgainorlossisexactlybalancedbythelossesorgainsoftheotherparticipant(s).Examples:赌博zero-sumgamesIngametheory6Moretypicalaregameswiththepotentialforeithermutualgainormutualharm,aswellassomeconflict.更多具有代表性的例子可能会导致共同得利博弈和共同损失博弈,同样的情况还会发生在另外一些冲突中。Moretypicalaregameswithth7GametheorywaspioneeredbyPrincetonmathematicianJohnvonNeumann.更多具有代表性的例子可能会导致共同得利博弈和共同损失博弈,同样的情况还会发生在另外一些冲突中。GametheorywaspioneeredbyP8PrincetonPrincetonUniversityisaprivateresearchuniversitylocatedinPrinceton,NewJersey,UnitedStates.TheschoolisoneoftheeightuniversitiesoftheIvyLeagueandisconsideredoneoftheColonialColleges.PrincetonPrincetonUniversity9JohnvonNeumannAHungarian-bornAmericanmathematicsandmadecontributiontoquantumphysics,functionalanalysis,settheory,economics,computerscience,topology,numericalanalysis,hydrodynamics,statisticsandmayothermathematicalfieldsasoneofwordhistory’soutstandingmathematicians.JohnvonNeumannAHungarian-b10Whenthinkingabouthowotherswillrespond,onemustputoneselfintheirshoes,andthinkastheywould;oneshouldnotimposeone’sownreasoningonthem.在考虑其他博弈者会如何应对时,博弈者必须能设身处地地换位思考,而不能把自己的主观判断强加于人。Whenthinkingabouthowothers11tic-tac-toe井字棋Tic-tack-toeisapencil-and-papergameinwhichtwoplayersalternatelyputcrosses(0)andcircles(×)inoneofthecompartmentsofasquaregridofninespaces.Theplayerwhosucceedsinplacingthreerespectivemarksinahorizontal,verticalordiagonalrowwinsthegame.tic-tac-toe井字棋Tic-tack-toei12Incontrasttothelinearchainofreasoningforsequentialgames,agamewithsimultaneousmovesinvolvesalogicalcircle.与连续策略博弈的线性思维不同,联立策略的博弈涉及逻辑循环。Incontrasttothelinearcha13JohnNashJohnForbesNashJr.(bornJune13,1928)isanAmericanmathematicianandeconomistwhoseworksingametheory,differentialgeometry,andpartialdifferentialequationshaveprovidedinsightintotheforcesthatgovernchanceandeventsinsidecomplexsystemsindailylife.JohnNashJohnForbesNashJr14Nashequilibrium纳什均衡,又称为非合作博弈均衡ANashequilibrium,namedafterJohnNash,isasetofstrategies,oneforeachplayer,suchthatnoplayerhasincentivetounilaterallychangeheraction.Nashequilibrium纳什均衡,又称为非合作博弈15Whenwesaythatanoutcomeisanequilibrium,thereisnopresumptionthateachperson’sprivatelybestchoicewillleadtoacollectivelyoptimalresult.当我们把博弈的结果表述为一种均衡的时候,并不能假定博弈的每个参与者的个人最佳策略将带来共同的最优化结果。Whenwesaythatanoutcomei16Nash’snotionofequilibriumremainsanincompletesolutiontotheproblemofcircularreasoninginsimultaneous-movegames.纳什关于均衡的概念还不能完全解决联立策略博弈中逻辑循环的问题。Nash’snotionofequilibrium17Andthedynamicprocessthatcanleadtoanequilibriumisleftunspecified.纳什均衡还没有清除地说明关于导致均衡的动态过程。Andthedynamicprocessthatc18Prisoners’dilemma囚徒困境Ingametheory,theprisoners’dilemmaisatypeofnon-zerogameinwhichtwoplayerscancooperatewithordefecttheotherplayer.Prisoners’dilemma囚徒困境19Prisoners’dilemmaTwosuspectsarearrestedbythepolice.Thepolicehaveinsufficientevidenceforaconviction,and,havingseparatedbothprisoners,visiteachofthemtoofferthesamedeal.Ifonetestifies(defectsfromtheother)fortheprosecutionagainsttheotherandtheotherremainssilent(cooperateswiththeother),thebetrayergoesfreeandthesilentaccomplicereceivesthefull8-yearsentence.Ifbothremainsilent,bothprisonersaresentencedtoonlyoneyearinjailforaminorcharge.Ifeachbetraystheother,eachreceivesafive-yearsentence.Eachprisonermustchoosetobetraytheotherortoremainsilent.Eachoneisassuredthattheotherwouldnotknowaboutthebetrayalbeforetheendoftheinvestigation.Ifweassumethateachplayercaresonlyaboutminimizinghisorherowntimeinjail,howshouldtheprisonersact?Prisoners’dilemmaTwosusp20警方逮捕A、B两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检举对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监8年。若二人都保持沉默(相关术语称互相“合作”),则二人同样判监一年。若二人都互相检举(互相“背叛”),则二人同样判监5年。囚徒困境假定每个参与者(即“囚徒”)都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。警方逮捕A、B两名嫌疑犯,但没有足够证据指控二人入罪。于是警21Gametheoryquantifiesthisinsightanddetailstherightproportionsofsuchmixtures.博弈论为提高洞察力和掌握混合性策略恰当的火候提供了参考。Gametheoryquantifiesthisin22CortésHernánCortéswasaSpanishexplorerwhoisfamousmainlyforhismarchacrossMexicoandhisconqueringoftheAztecEmpireinMexico.CortésHernánCortéswasa23strategyofbrinkmanshipBrinkmanshipisthepracticeofpushingadangeroussituationtothevergeofdisasterinordertoachievethemostadvantageousoutcome.Itoccursininternationalpolitics,foreignpolicy,labourrelations,and(incontemporarysettings)inmilitarystrategyinvolvingthethreateneduseofnuclearweapons.strategyofbrinkmanshipBrink24ThomasSchellingThomasCrombieSchelling(born14April1921)isanAmericaneconomistandprofessorofforeignaffairs,nationalsecurity,nuclearstrategy,andarmscontrolattheSchoolofPublicPolicyatUniversityofMaryland,CollegePark.Hewasawardedthe2005NobelMemorialPrizeinEconomicSciences(sharedwithRobertAumann)for"havingenhancedourunderstandingofconflictandcooperationthroughgame-theoryanalysis."ThomasSchellingThomasCrombie25WinstonChurchillHewastheEnglishstatesmanandauthor,bestknownasPrimeMinisteroftheUnitedKingdomduringtheWWWII.Well-knownasanorator,strategist,andpolitician,ChurchillwasonetheimportantleadersinmodernBritishandworldhistory.Hewonthe1953NobelPrizeinLiteratureforhismanybooksonEnglishandworldhistory.WinstonChurchillHewastheEn26Toconveyinformation,useanactionthatiscredible“signal”,somethingthatwouldnotbedesirableifthecircumstanceswereotherwise.Forexample,anextendedwarrantyisacrediblesignaltotheconsumerthatthefirmbelievesitisproducingahigh-qualityproduct.如果要公布信息,就要采用传递可信信息的策略,而且形势发生变化时策略也必须相应进行改变,例如,提供长期的质量保证是企业生产高质量产品信心的显示,对于消费者来说也是一个可以信赖的信号。Toconveyinformation,usean27ExerciseIVMultipleChoice1.D2.D3.D4.B5.B
6. C7. D8. A9. B10. DExerciseIVMultipleChoice1.28ExerciseVBlankFilling1.prime 2.interactive3.purchasing4.journal5.enhances6.abuse7.methodology8.modeling9.preferences10.constructingExerciseVBlankFilling1.pri29ExerciseVICloze1. B2. A3. C4. D5. A6. C7. D8. B9. A10. C11. D12. B13. A14. C15. D16. B17. D18. A19. D20. DExerciseVICloze1. B11. D30TranslationPractice(P.18)1.互赢博弈和互败博弈2.连续策略博弈3.联立策略博弈4.直线推理5.循环推理6.纳什均衡7.支配化策略8.最优化结果9.合作破裂10.边缘化策略TranslationPractice(P.18)1.互31TranslationPractice(P.18)1.petitionandcooperation3.strategicinterdependence4.prisoners’dilemma5.long-runloss6.tit-for-tatstrategy6.tit-for-tatstrategy7.mixingone’smoves8.hitapassingshotcross-courtordowntheline9.monopolymarket10.equilibriumsharesTranslationPractice(P.18)1.p32TranslationPractice(P.18)1.博弈的实质是博弈者采取策略之间的相互依赖性。这种策略性的相互依赖表现为两个不同的类别:连续策略之间的相互做做以及联立策略之间的相互作用。2.当我们把博弈的结果表述为一种均衡的时候,并不是基于以下的假设,即博弈的每个参与者的个人最佳策略将会带来共同的最优化结果。TranslationPractice(P.18)1.博33TranslationPractice(P.18)3.在一些博弈的冲突中,任何理化和计划性的行为都会对手发现并加以利用。因此,通过采用组合性策略迷惑对手就显得非常重要。我们在体育运动中可以发现典型的例子-比如在足球比赛中特定情况下选择跑位或传球,在网球比赛中击球时选择斜线球或底线球。4.边缘政策“是一种故意使局势变得有些无法控制的策略,正是这种无法控制性可能会使另一方法接受从而迫使其妥协”。TranslationPractice(P.18)3.在34TranslationPractice(P.18)5.当博弈的一方了解其他人所不掌握的信息时,他会急于隐瞒这一信息(比如牌局中所拿到的牌),在其他一些情况下,他还会想令人信服地公开某些信息(比如公司对产品质量的承诺)。在这两种情况下,“行胜于言”是博弈者遵循的基本原则。TranslationPractice(P.18)5.当35Unit1MathematicsUnit1Mathematics36Warming-upMathematicshasawideapplication,suchascomputer,economy.Nowithasbeenbroadentheoreticallyandappliedtomanysocialproblems.Ithasdrivenarevolutionineconomictheory.Ithasalsofoundapplicationinsociologyandpsychology,andestablishedlinkswithevolutionandbiology.OnesignificantapplicationisGameTheorywhichreceivedspecialattentionwiththeawardingoftheNobelPrizeineconomicstoJohnNash.Warming-upMathematicshasawi37TextAGameTheory博弈论TextAGameTheory38GameTheoryGametheoryisthemathematicalanalysisofanysituationinvolvingaconflictofinterest,withtheintentofindicatingtheoptimalchoicesthat,undergivenconditions,willleadtoadesiredoutcome.
GameTheoryGametheoryisthe39Itattemptstodeterminemathematicallyandlogically
theactionsthat“players”shouldtaketosecurethebestoutcomesforthemselvesinawidearrayof“games”.它试图以数学和逻辑的方法帮助博弈者作出决策,使他们在一系列纷繁复杂的博弈中保证利益的最大化。
Itattemptstodeterminemathe40zero-sumgamesIngametheoryandeconomictheory,zero-sumdescribesasituationinwhichaparticipant'sgainorlossisexactlybalancedbythelossesorgainsoftheotherparticipant(s).Examples:赌博zero-sumgamesIngametheory41Moretypicalaregameswiththepotentialforeithermutualgainormutualharm,aswellassomeconflict.更多具有代表性的例子可能会导致共同得利博弈和共同损失博弈,同样的情况还会发生在另外一些冲突中。Moretypicalaregameswithth42GametheorywaspioneeredbyPrincetonmathematicianJohnvonNeumann.更多具有代表性的例子可能会导致共同得利博弈和共同损失博弈,同样的情况还会发生在另外一些冲突中。GametheorywaspioneeredbyP43PrincetonPrincetonUniversityisaprivateresearchuniversitylocatedinPrinceton,NewJersey,UnitedStates.TheschoolisoneoftheeightuniversitiesoftheIvyLeagueandisconsideredoneoftheColonialColleges.PrincetonPrincetonUniversity44JohnvonNeumannAHungarian-bornAmericanmathematicsandmadecontributiontoquantumphysics,functionalanalysis,settheory,economics,computerscience,topology,numericalanalysis,hydrodynamics,statisticsandmayothermathematicalfieldsasoneofwordhistory’soutstandingmathematicians.JohnvonNeumannAHungarian-b45Whenthinkingabouthowotherswillrespond,onemustputoneselfintheirshoes,andthinkastheywould;oneshouldnotimposeone’sownreasoningonthem.在考虑其他博弈者会如何应对时,博弈者必须能设身处地地换位思考,而不能把自己的主观判断强加于人。Whenthinkingabouthowothers46tic-tac-toe井字棋Tic-tack-toeisapencil-and-papergameinwhichtwoplayersalternatelyputcrosses(0)andcircles(×)inoneofthecompartmentsofasquaregridofninespaces.Theplayerwhosucceedsinplacingthreerespectivemarksinahorizontal,verticalordiagonalrowwinsthegame.tic-tac-toe井字棋Tic-tack-toei47Incontrasttothelinearchainofreasoningforsequentialgames,agamewithsimultaneousmovesinvolvesalogicalcircle.与连续策略博弈的线性思维不同,联立策略的博弈涉及逻辑循环。Incontrasttothelinearcha48JohnNashJohnForbesNashJr.(bornJune13,1928)isanAmericanmathematicianandeconomistwhoseworksingametheory,differentialgeometry,andpartialdifferentialequationshaveprovidedinsightintotheforcesthatgovernchanceandeventsinsidecomplexsystemsindailylife.JohnNashJohnForbesNashJr49Nashequilibrium纳什均衡,又称为非合作博弈均衡ANashequilibrium,namedafterJohnNash,isasetofstrategies,oneforeachplayer,suchthatnoplayerhasincentivetounilaterallychangeheraction.Nashequilibrium纳什均衡,又称为非合作博弈50Whenwesaythatanoutcomeisanequilibrium,thereisnopresumptionthateachperson’sprivatelybestchoicewillleadtoacollectivelyoptimalresult.当我们把博弈的结果表述为一种均衡的时候,并不能假定博弈的每个参与者的个人最佳策略将带来共同的最优化结果。Whenwesaythatanoutcomei51Nash’snotionofequilibriumremainsanincompletesolutiontotheproblemofcircularreasoninginsimultaneous-movegames.纳什关于均衡的概念还不能完全解决联立策略博弈中逻辑循环的问题。Nash’snotionofequilibrium52Andthedynamicprocessthatcanleadtoanequilibriumisleftunspecified.纳什均衡还没有清除地说明关于导致均衡的动态过程。Andthedynamicprocessthatc53Prisoners’dilemma囚徒困境Ingametheory,theprisoners’dilemmaisatypeofnon-zerogameinwhichtwoplayerscancooperatewithordefecttheotherplayer.Prisoners’dilemma囚徒困境54Prisoners’dilemmaTwosuspectsarearrestedbythepolice.Thepolicehaveinsufficientevidenceforaconviction,and,havingseparatedbothprisoners,visiteachofthemtoofferthesamedeal.Ifonetestifies(defectsfromtheother)fortheprosecutionagainsttheotherandtheotherremainssilent(cooperateswiththeother),thebetrayergoesfreeandthesilentaccomplicereceivesthefull8-yearsentence.Ifbothremainsilent,bothprisonersaresentencedtoonlyoneyearinjailforaminorcharge.Ifeachbetraystheother,eachreceivesafive-yearsentence.Eachprisonermustchoosetobetraytheotherortoremainsilent.Eachoneisassuredthattheotherwouldnotknowaboutthebetrayalbeforetheendoftheinvestigation.Ifweassumethateachplayercaresonlyaboutminimizinghisorherowntimeinjail,howshouldtheprisonersact?Prisoners’dilemmaTwosusp55警方逮捕A、B两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检举对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监8年。若二人都保持沉默(相关术语称互相“合作”),则二人同样判监一年。若二人都互相检举(互相“背叛”),则二人同样判监5年。囚徒困境假定每个参与者(即“囚徒”)都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。警方逮捕A、B两名嫌疑犯,但没有足够证据指控二人入罪。于是警56Gametheoryquantifiesthisinsightanddetailstherightproportionsofsuchmixtures.博弈论为提高洞察力和掌握混合性策略恰当的火候提供了参考。Gametheoryquantifiesthisin57CortésHernánCortéswasaSpanishexplorerwhoisfamousmainlyforhismarchacrossMexicoandhisconqueringoftheAztecEmpireinMexico.CortésHernánCortéswasa58strategyofbrinkmanshipBrinkmanshipisthepracticeofpushingadangeroussituationtothevergeofdisasterinordertoachievethemostadvantageousoutcome.Itoccursininternationalpolitics,foreignpolicy,labourrelations,and(incontemporarysettings)inmilitarystrategyinvolvingthethreateneduseofnuclearweapons.strategyofbrinkmanshipBrink59ThomasSchellingThomasCrombieSchelling(born14April1921)isanAmericaneconomistandprofessorofforeignaffairs,nationalsecurity,nuclearstrategy,andarmscontrolattheSchoolofPublicPolicyatUniversityofMaryland,CollegePark.Hewasawardedthe2005NobelMemorialPrizeinEconomicSciences(sharedwithRobertAumann)for"havingenhancedourunderstandingofconflictandcooperationthroughgame-theoryanalysis."ThomasSchellingThomasCrombie60WinstonChurchillHewastheEnglishstatesmanandauthor,bestknownasPrimeMinisteroftheUnitedKingdomduringtheWWWII.Well-knownasanorator,strategist,andpolitician,ChurchillwasonetheimportantleadersinmodernBritishandworldhistory.Hewonthe1953NobelPrizeinLiteratureforhismanybooksonEnglishandworldhistory.WinstonChurchillHewastheEn61Toconveyinformation,useanactionthatiscredible“signal”,somethingthatwouldnotbedesirableifthecircumstanceswereotherwise.Forexample,anextendedwarra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 井队项目管理与进度控制
- 产业园区物业管理的立法完善
- IT培训师工作协议
- 互联网公司运营专员薪资协议
- 企业销售合同谈判技巧
- 企业品牌活动表演合同
- 交通咨询合作协议模板
- 代养儿童合同
- 企业社会责任品牌策划合同模板
- 企业团建导游合作协议模板
- 2024自动导引车AGV技术规范
- 广东某办公楼改造装饰工程施工组织设计方案
- 《20世纪的科学伟人爱因斯坦》参考课件2
- 八年级道德与法治上册 第一单元 走进社会生活 单元复习课件
- 设计师会议管理制度
- 三年级上册数学说课稿《5.笔算多位数乘一位数(连续进位)》人教新课标
- 行贿受贿检讨书
- 人教版《劳动教育》六上 劳动项目二《晾晒被子》教学设计
- (正式版)QC∕T 1208-2024 燃料电池发动机用氢气循环泵
- 中外合作办学规划方案
- 医学美容技术专业《中医美容技术》课程标准
评论
0/150
提交评论