2023届贵州省毕节市实验高级中学数学高一上期末联考试题含解析_第1页
2023届贵州省毕节市实验高级中学数学高一上期末联考试题含解析_第2页
2023届贵州省毕节市实验高级中学数学高一上期末联考试题含解析_第3页
2023届贵州省毕节市实验高级中学数学高一上期末联考试题含解析_第4页
2023届贵州省毕节市实验高级中学数学高一上期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.“”是“”成立的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要2.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.3.若,则的可能值为()A.0 B.0,1C.0,2 D.0,1,24.为了得到函数图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位5.函数的最小值是()A. B.0C.2 D.66.已知,则()A.-3 B.-1C.1 D.37.已知函数的定义域为,则函数的定义域为()A. B.C. D.8.在正方体中,异面直线与所成的角为()A.30° B.45°C.60° D.90°9.“是”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④11.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.12.将函数的图象向左平移个单位,再将图象上各点的纵坐标不变,横坐标变为原来的,那么所得图象的函数表达式为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,用m,n表示为___________.14.函数的定义域是_____________15.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是__16.已知函数,若,不等式恒成立,则的取值范围是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.18.已知,且(1)求的值;(2)求的值19.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象对称轴方程;(2)讨论函数f(x)在上的单调性.20.已知角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点(1)求值(2)已知,求的值21.(1)计算:,(为自然对数的底数);(2)已知,求的值.22.已知集合,.(1)当时,求;(2)若,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【详解】或,或,即“”是“”成立必要不充分条件,故选:B.【点睛】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.2、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.3、C【解析】根据,分,,讨论求解.【详解】因为,当时,集合为,不成立;当时,集合为,成立;当时,则(舍去)或,当时,集合为故选:C4、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的简单应用,属于基础题5、B【解析】时,,故选B.6、D【解析】利用同角三角函数基本关系式中的技巧弦化切求解.【详解】.故选:D【点睛】本题考查了同角三角函数基本关系中的弦化切技巧,属于容易题.7、B【解析】抽象函数的定义域求解,要注意两点,一是定义域是x的取值范围;二是同一对应法则下,取值范围一致.【详解】的定义域为,,即,,解得:且,的定义域为.故选:.8、C【解析】首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.9、B【解析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由可得;由可得则由不能得到,但由可得故“是”的必要不充分条件.故选:B10、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D11、B【解析】所以,所以。故选B。12、B【解析】将函数的图象向左平移个单位后所得图象对应的的解析式为;再将图象上各点纵坐标不变,横坐标变为原来的,所得图象对应的解析式为.选B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.14、.【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.15、②【解析】对于①,,则,位置关系不确定,的位置关系不能确定;对于②,由垂直于同一平面的两直线平行知,结论正确;对于③,,则或;对于④,,则或,故答案为②.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.16、【解析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)利用三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)利用线面垂直的性质,结合线面垂直的判定定理进行证明即可.【详解】(1)因为,分别是,的中点,所以,又因为平面,平面,所以平面;(2)因为底面,底面,所以,又因为,,平面,所以平面,而平面,所以.18、(1);(2)【解析】(1)将条件化为,然后,可得答案;(2)由第一问可得,然后,解出即可.【详解】(1)因为,且,所以故又因为,所以,即,所以所以(2)由(1)知,又因为,所以.因为,,所以,即,解得或因为,所以,所以19、(1);(2)单调增区间为;单调减区间为.【解析】(1)先化简得函数f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函数y=f(x)图象的对称轴方程.(2)先求函数的单调递增区间为(k∈Z),再给k取值,得到函数f(x)在上的单调性.【详解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函数f(x)的对称轴方程为x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函数f(x)的单调递增区间为(k∈Z).注意到x∈,令k=0,得函数f(x)在上的单调递增区间为;其单调递减区间为.【点睛】(1)本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握说和分析推理能力.(2)一般利用复合函数的单调性原理求复合函数的单调区间,首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.20、(1)(2)【解析】(1)依题意,将原式利用诱导公式化简,分子分母同除,代入正切计算可求出结果.(2)由终边所过点以及二倍角公式可计算和的三角函数值,利用平方和为1求出,代入两角和的余弦可计算的值.【小问1详解】依题意,原式【小问2详解】因为是第一象限角,且终边过点,所以,,所以,,因为,且,所以,所以21、(1)2;(2).【解析】(1)由条件利用对数的运算性质求得要求式子的值.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论