




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
液/液界面电化学及电 分析化学简介邵元华,教授CollegeofChemistryandMolecularEngineering PekingUniversity二00二年十一月液/液界面电化学及电 分析化学简介邵元华,教授Coll11.液/液界面电化学的发展历史2.液/液界面电化学的基本原理3.液/液界面电化学的主要研究方法及仪器设备4.液/液界面电化学的现状5.液/液界面电化学的未来展望主要内容1.液/液界面电化学的发展历史主要内容2参考书和文献:1.液/液界面电化学,P.Vanysek著,罗颖华译,汪尔康审校,吉林大学出版社,1987年2.H.H.GiraultandD.J.Schiffrin,inElectroanalyticalChemistry,A.J.Bard.,Ed.;Vol:15,p.1,MarcelDekker,NewYork,19893.H.H.Girault,inModernAspectsofElectrochemistry,J.O.Bockris,B.E.Conway,R.E.White,Eds.;PlenumPress,NewYork,1993,Vol:25,p.14.J.Koryta,Electrochemicalpolarizationphenomenaattheinterfaceoftwoimmiscibleelectrolytesolutions.ElectrochimicaActa,24(1979)293-3005.J.Koryta,Electrochemicalpolarizationphenomenaattheinterfaceoftwoimmiscibleelectrolytesolutions.II.Progresssince1978.ElectrochimicaActa,29(1984)445-4526.VolkovAG,DeamerDW.Liquid-liquidinterfaces.TheoryandMethods.California:CRCPress,1996.参考书和文献:31.BriefIntroductionofElectrochemistryat Liquid/LiquidInterfaces应用电化学方法研究电荷在液/液界面上的转移反应-液/液界面电化学.它是电化学及电分析化学的一个重要分支,也是生物电化学的一个重要组成部分。Charge(electronandion)transferacrossLiquid/Liquid(L/L)interfaces,orOil/Waterinterfaces,ortheinterfacebetweentwoimmiscibleelectrolyteSolutions(ITIES)isoneofthemostfundamentalphysicochemicalprocesses.1.BriefIntroductionofElect4Briefhistory: 1902,NernstandRiesenfeld1906,Cremerpointedoutthattheanalogybetweenthewater/oil/waterconcentrationcellsandbiologicalmembrane1939,VerweyandNiessen,firsttheoreticalpaperontheelectricaldoublelayerandpotentialdistributionatITIES1970s,Gavachetal.inFrance首先认识到L/L界面在一定的实验条件下可以被极化,并用Chronopotentiometry对一些简单离子在Water/Nitrobenzene(W/NB)的转移行为进行了研究。同时用ModifiedVerwey-Niessen(MVN)对实验结果进行了分析。随后Korytaetal.发展了滴水电极及相应的实验装置,并首先研究了中性载体加速离子转移反应。Samecetal.in1979设计了具有iR降补偿性质的四电极恒电位仪,用来记录离子转移反应的伏安图。这样L/L界面电化学才在世界各地得到普及和蓬勃发展。Briefhistory:51980s,汪尔康先生等是中国第一个从事L/L界面电化学研究的group1986,Giraultetal.第一个将微-L/L界面支持在Micropipettes上 1991,Cornetal.应用SHG研究L/L界面 1995,MirkinandBardetal.应用SECM研究L/L界面1997,Y.Shaoetal.第一个将纳米级-L/L界面支持在Nanopipettes上最近几年各种光谱技术也应用于此领域的研究1980s,汪尔康先生等是中国第一个从事L/L界面电化学6WWElectrodeOilGold,Pt,CNB1,2-DCEThedifferencebetweenL/Linterfaceand Electrode/ElectrolyteinterfaceWWElectrodeOilGold,Pt,CNB7Electrochemistryof
L/LinterfacesO+ e=RRedoxReactionsO+ e=RRedoxReactionsMZ(w)=MZ(o)IonTransfertheconventionalElectrochemistryThedifferencebetweenElectrochemistryatL/Linterface andtheconventionalElectrochemistryElectrochemistryofO+ e8ChemicalsensorsElectrochemistryH+,pHK+,Na+,NH4+Cl-,Ac+O+e=RElectroactivespeciesNonelectroactivespeciesL/LInterfaceElectrochemistryatL/LInterfacesisthebridgebetweentheconventionalelectrochemistryandChemicalsensorsChemicalsensorsElectrochemist9ElectrochemistryatLiquid/LiquidInterfacesisafastwaytoselectreceptorsformakingchemicalsensorsElectrochemistryatLiquid/10ElectrodeOBiologicalMembraneModelL/LInterfaceElectrode/electrolyte
Membrane/solutionArtificial,supportedmembraneandBLMElectrodeOBiologicalMembrane11ElectrochemistryatL/LInterfacesNewBranchofElectrochemistryMechanismofChemicalsensorsPhaseTransfercatalyticreactionsMimickingbiologicalmembranesResearchSignificanceandapplicationsofElectrochemistryatL/LInterfacesExtractionMechanismElectrochemistryNewBranchofM122.液/液界面电化学的基本原理2.1.EquilibriumconditionsandNernstpotentialIngeneralatLiquid/Liquidinterfaces,therearetwotypesofchargepartition: (A)thetransferofanionMwiththechargenumberzfromthephasewtothephaseoandthereverse: MZ(w) =MZ(o)M+(w) +L(o) =ML+(o)(B)theelectrontransferbetweenaredoxcoupleO1/R1inthephasewandaredoxcoupleO2/R2inthephaseo,whichcanberepresentedas:O1(w)+R2(o)=R1(w)+O2(o)
2.液/液界面电化学的基本原理2.1.Equilibrium13NernstEquationsNernstEquations14Liquid/Liquidinterfaceshavebeenclassifiedintotheideal-polarizedinterfaceandno-polarizedinterface.2.2.SingleionGibbsenergyoftransferTATBassumptionLiquid/Liquidinterfaceshave15北京大学电分析课件液液界面电化学及电分析化学简介162.3.SolvationofIonBornequation2.4.Interfacialstructureandtheiontransfermechanism(A)MVNMODEL(B)GSMODEL2.3.SolvationofIon2.4.Interf17北京大学电分析课件液液界面电化学及电分析化学简介18北京大学电分析课件液液界面电化学及电分析化学简介192.5.SolventsandbaseelectrolytesThereareover20organicsolventswhichhavebeentestedintheITIESstudiessofar.AspointedoutbyKorytaet.al.,thefollowingthreerequirementshavebeencommonlyusedtochoosetheorganicsolvent:(1).Thesolubilityofsolventinwaterandwaterinthesolventmustbeverysmall.(2).Thesolventmustbesufficientlypolartopromotesufficientdissociationofthesupportingelectrolyteandthuskeepingenoughconductivityofthesolution.(3).Thedensityofthesolventshoulddiffersignificantlyfromthatofaqueousphaseinordertogetaphysicallystablel/linterface.2.5.Solventsandbaseelectrol20Atpresent,themostcommonlyusedorganicsolventsarenitrobenzene(NB)and1,2-dichloroethane(1,2-DCE).Someothersolventshavebeentriedinthepasttwodecades,forexample,propiophenone,4-isopropyl-1-methyl-2-nitrobenzene,dichloro-methane,nitrotulene,chloroform,anilineetc.Inordertogetmoreflexiblechoice,organicsolventmixtureshavebeenalsoemployed,forexample,nitrobenzene+chlorobenzene,NB+benzonitrileandNB+benzene.Baseelectrolytes:TBATPB(tetrabutylammoniumtetraphenylborate),TBATPBCl,CVTPB,BTPPATPB(Bis[triphenylphosphoranylidene]ammoniumtetraphenylborate)Atpresent,themostcommonly21北京大学电分析课件液液界面电化学及电分析化学简介22北京大学电分析课件液液界面电化学及电分析化学简介233.液/液界面电化学的主要研究方法 及仪器设备Almostalltheinstrumentshavebeenusedtostudyclassicalelectrochemistrycanbeusedtoinvestigatethechargetransferatliquid/Liquidinterfaces.4-electrodepotentiostat--------BigiRdropaqueoussolutiondropping(ascending)electrodetwo-electrodesystem--------microelectrodesRecently,wedevelopedanoveltechniquetostudyITIESwiththree-electrodesetupwiththehelpofthephaseratio.Thus,allelectrochemicallabscandoresearchonthissubjects.3.液/液界面电化学的主要研究方法Almostallth24北京大学电分析课件液液界面电化学及电分析化学简介252-电极系统2-电极系统26应用于液/液界面电化学研究的升水电极-四电极系统应用于液/液界面电化学研究的27北京大学电分析课件液液界面电化学及电分析化学简介28北京大学电分析课件液液界面电化学及电分析化学简介29新的技术,例如:SHG(Secondharmonicgeneration)microelectrodes,micropipettesandnano-pipettesSECMFemto-laserSimulationsThinfilms现已用在L/LInterfaces的研究。各种电化学方法和技术新的技术,例如:各种电化学方法和技术304.液/液界面电化学的现状Structure: MVNModelandGSModelMechanism: FacilitatediontransfermechanismKinetics: Butler-Volmerequation,Marcustheory Nanometeropipettes SECMApplications:
Thinfilms(solarcell,drugdelivery)4.液/液界面电化学的现状31目前国际上液/液界面电化学研究 存在的主要问题1.界面结构未知!MVN模型和混合溶剂层模型(GS)2.可供选择作为有机相的有机溶剂数目有限3.没有很好的获取转移反应动力学的实验手段4.iR(i-电流,R-电阻,iR降是由于溶液中电阻所引起的干扰)降及充电电流较常规电化学更加严重目前国际上液/液界面电化学研究1.界面结构未知!MVN32HowtosolvetheseProblemsMicroelectrodes:SolidandNano-andMicropipettes+ScanningElectrochemicalMicroscopy,SECMHowtosolvetheseProblemsMic33ElectrochemistryatL/LInterfacesArtificialMembrane/ElectrolyteInterfacesBLMArtificialMembraneandBiosensorsModifiedL/LInterfacesMicroelectrodesNano-andMicropipettesSECMElectrochemistryArtificialMe34TheSEMdiagramsofNano-andMicropipettesMicropipettesNanopipettesTheSEMdiagramsofMicropipett35MicropipettesTheta()MicropipetteMicropipettesTheta()Micropip36TheSEMdiagramsofNano-andMicropipettesMicropipettesNanopipettes我们group可以制备内径从几个nm到十几个m的玻璃纳、微米管TheSEMdiagramsofMicropipett37AqueousPhaseOrganicPhaseAqueousPhaseOrganicPhaseAsymmetricDiffusionFieldAqueousPhaseOrganicPhaseAque38TBATPBassupportingelectrolyteinDCETBATPBClassupportingelectrolyteinDCEBTPPATPBassupportingelectrolyteinDCEMicropipetteasatooltodeterminetheionicspecieslimitingthepotentialwindowatL/LInterfacesTBATPB(Tetrabutyalammoniumtetraphenylborate)TBATPBCl(tetrabutyl-ammoniumtetrakis[4-chlorophenyl]borate)BTPPATPB(Bis[triphosphor-anylidene]ammoniumtetraphenyl-borate)1,2-dichloroethane(DCE)TBATPBassupportingTBATPBCl39Ag/AgCl/0.01MTBACl/0.25mMDB18C6+0.01MTBATPBCl//0.01MKCl/AgCl/AgIdentifythedifferentmechanismsAg/AgCl/0.01MTBACl/0.25mMDB18C40ACTTOCTICTIDwowowowoIdentifyofdifferentmechanismsoffacilitatediontransfersACTTOCTICTIDwowowowoIdentifyo41北京大学电分析课件液液界面电化学及电分析化学简介42Idisk=4nFaDCIpip=3.35nFaDCWhyIpipisabout2.63timesbiggerthanIdisk?Silanizationplaysveryimportantrolehere!Anal.Chem.,1998,70,p3155-3161Idisk=4nFaDCIpip=3.35nFaDCW433.4E-93.4E-944北京大学电分析课件液液界面电化学及电分析化学简介45Nanometer-sizedL/LInterface纳米管NanopipetAqueousPhaseNanometer-sized纳米管Aqueous46Nano-ITIESkofrom0.1cm/sto10cm/sA54nmradiusB5nmradiusJ.Am.Chem.Soc.,1997,119,8103K+(w)+DB18C6(DCE)=[K+DB18C6](DCE)
Nano-ITIESJ.Am.Chem.Soc.,199747北京大学电分析课件液液界面电化学及电分析化学简介48J.Am.Chem.Soc.,1998,120,12700科学意义和创新点:第一次在实验上实现了非氧化还原物质的Generation/CollectionMode。对于测量反应中间产物和快速电荷转移反应动力学有重要意义。J.Am.Chem.Soc.,1998,120,12749北京大学电分析课件液液界面电化学及电分析化学简介50Thephotoof-micropipetteundermicroscopeThephotoof-micropipetteun51北京大学电分析课件液液界面电化学及电分析化学简介52“Non-solution”L/LInterfaceElectrochemistry“Non-solution”L/LInterface53Generator(1)andcollector(2)voltammogramsofthetransferofK+betweenwaterandDCEcontainingDB18C6igvs.Egandicvs.Egcurvesobtainedwithanaqueousfilmlinkingtwobarrelsofthe-pipetGenerator(1)andcollectorig54Detectionofammoniaintheair.Cyclicvoltammogamsobtainedwitha-pipetexposedtoair(1)andammoniavaporaboveits2MsolutionDetectionofammoniaintheai55ThepotentialwindowsdependupontheamountofAgar.Scanrateis30mV/s.Theradiusofthemicropipetteis4m,curves1、2、3and4correspondingto25%、10%、1%and0.5%ofAgar,respectivelyAgar-waterMicroelectrodeThepotentialwindowsdependu56CyclicVoltammogramsofK+transferfacilitatedbyDB18C6.KClis0.1M,Scanrate=30mV/s。Theradiusofthemicropipetteis3μm。Curves1,2and3correspondingtotheconcentrationsofDB18C60.25,0.5and1.0mM.123CyclicVoltammogramsofK+tra57(a)r=12µm(b)r=3µm.(a)r=12µm(b)r=3µm.58Planarstructure(a)and3Dstructure(b)ofanewtypeofcrownetherCyclicvoltammogramwithscanrateof10mV/sfora14m-radiusmicropipetteelectrodewith100mMNaClinaqueousphaseand10mMTBATPBinorganicphasePlanarstructure(a)and3DCy59Alkalimetalionstransferacrossthewater/DCEinterfaceFacilitatedbyDB18C6Alkalimetalionstransferacr60Ionradius(r),formaltransferpotentialofrelevantalkalimetalionsandtheassociationconstantsofcomplex(M-DB18C6)+inDCEphaseIonradius(r),formaltransfe61冰/有机相溶液界面研究示意图冰/有机相溶液界面研究示意图62应用常规三电极装置(恒电位仪)研究电荷在液/液界 面上的转移反应实验装置图Aqueousphase应用常规三电极装置(恒电位仪)研究电荷在液/液界Aqueou63异相电子转移反应创新点:用四(二)电极系统所能研究的体系,如离子、加速离子和电子转移反应,均能用常规三电极系统进行研究,这对于普及和发展此领域有重要意义。异相电子转移反应创新点:用四(二)64Ag/AgClAg/AgCl655.液/液界面电化学的未来展望InterfacialstructureApplicationsBiologicalMembranesKineticsandPhaseTransferCatalysisSolarcellsDrugDeliveryandpharmacokinetics5.液/液界面电化学的未来展望66液/液界面电化学及电 分析化学简介邵元华,教授CollegeofChemistryandMolecularEngineering PekingUniversity二00二年十一月液/液界面电化学及电 分析化学简介邵元华,教授Coll671.液/液界面电化学的发展历史2.液/液界面电化学的基本原理3.液/液界面电化学的主要研究方法及仪器设备4.液/液界面电化学的现状5.液/液界面电化学的未来展望主要内容1.液/液界面电化学的发展历史主要内容68参考书和文献:1.液/液界面电化学,P.Vanysek著,罗颖华译,汪尔康审校,吉林大学出版社,1987年2.H.H.GiraultandD.J.Schiffrin,inElectroanalyticalChemistry,A.J.Bard.,Ed.;Vol:15,p.1,MarcelDekker,NewYork,19893.H.H.Girault,inModernAspectsofElectrochemistry,J.O.Bockris,B.E.Conway,R.E.White,Eds.;PlenumPress,NewYork,1993,Vol:25,p.14.J.Koryta,Electrochemicalpolarizationphenomenaattheinterfaceoftwoimmiscibleelectrolytesolutions.ElectrochimicaActa,24(1979)293-3005.J.Koryta,Electrochemicalpolarizationphenomenaattheinterfaceoftwoimmiscibleelectrolytesolutions.II.Progresssince1978.ElectrochimicaActa,29(1984)445-4526.VolkovAG,DeamerDW.Liquid-liquidinterfaces.TheoryandMethods.California:CRCPress,1996.参考书和文献:691.BriefIntroductionofElectrochemistryat Liquid/LiquidInterfaces应用电化学方法研究电荷在液/液界面上的转移反应-液/液界面电化学.它是电化学及电分析化学的一个重要分支,也是生物电化学的一个重要组成部分。Charge(electronandion)transferacrossLiquid/Liquid(L/L)interfaces,orOil/Waterinterfaces,ortheinterfacebetweentwoimmiscibleelectrolyteSolutions(ITIES)isoneofthemostfundamentalphysicochemicalprocesses.1.BriefIntroductionofElect70Briefhistory: 1902,NernstandRiesenfeld1906,Cremerpointedoutthattheanalogybetweenthewater/oil/waterconcentrationcellsandbiologicalmembrane1939,VerweyandNiessen,firsttheoreticalpaperontheelectricaldoublelayerandpotentialdistributionatITIES1970s,Gavachetal.inFrance首先认识到L/L界面在一定的实验条件下可以被极化,并用Chronopotentiometry对一些简单离子在Water/Nitrobenzene(W/NB)的转移行为进行了研究。同时用ModifiedVerwey-Niessen(MVN)对实验结果进行了分析。随后Korytaetal.发展了滴水电极及相应的实验装置,并首先研究了中性载体加速离子转移反应。Samecetal.in1979设计了具有iR降补偿性质的四电极恒电位仪,用来记录离子转移反应的伏安图。这样L/L界面电化学才在世界各地得到普及和蓬勃发展。Briefhistory:711980s,汪尔康先生等是中国第一个从事L/L界面电化学研究的group1986,Giraultetal.第一个将微-L/L界面支持在Micropipettes上 1991,Cornetal.应用SHG研究L/L界面 1995,MirkinandBardetal.应用SECM研究L/L界面1997,Y.Shaoetal.第一个将纳米级-L/L界面支持在Nanopipettes上最近几年各种光谱技术也应用于此领域的研究1980s,汪尔康先生等是中国第一个从事L/L界面电化学72WWElectrodeOilGold,Pt,CNB1,2-DCEThedifferencebetweenL/Linterfaceand Electrode/ElectrolyteinterfaceWWElectrodeOilGold,Pt,CNB73Electrochemistryof
L/LinterfacesO+ e=RRedoxReactionsO+ e=RRedoxReactionsMZ(w)=MZ(o)IonTransfertheconventionalElectrochemistryThedifferencebetweenElectrochemistryatL/Linterface andtheconventionalElectrochemistryElectrochemistryofO+ e74ChemicalsensorsElectrochemistryH+,pHK+,Na+,NH4+Cl-,Ac+O+e=RElectroactivespeciesNonelectroactivespeciesL/LInterfaceElectrochemistryatL/LInterfacesisthebridgebetweentheconventionalelectrochemistryandChemicalsensorsChemicalsensorsElectrochemist75ElectrochemistryatLiquid/LiquidInterfacesisafastwaytoselectreceptorsformakingchemicalsensorsElectrochemistryatLiquid/76ElectrodeOBiologicalMembraneModelL/LInterfaceElectrode/electrolyte
Membrane/solutionArtificial,supportedmembraneandBLMElectrodeOBiologicalMembrane77ElectrochemistryatL/LInterfacesNewBranchofElectrochemistryMechanismofChemicalsensorsPhaseTransfercatalyticreactionsMimickingbiologicalmembranesResearchSignificanceandapplicationsofElectrochemistryatL/LInterfacesExtractionMechanismElectrochemistryNewBranchofM782.液/液界面电化学的基本原理2.1.EquilibriumconditionsandNernstpotentialIngeneralatLiquid/Liquidinterfaces,therearetwotypesofchargepartition: (A)thetransferofanionMwiththechargenumberzfromthephasewtothephaseoandthereverse: MZ(w) =MZ(o)M+(w) +L(o) =ML+(o)(B)theelectrontransferbetweenaredoxcoupleO1/R1inthephasewandaredoxcoupleO2/R2inthephaseo,whichcanberepresentedas:O1(w)+R2(o)=R1(w)+O2(o)
2.液/液界面电化学的基本原理2.1.Equilibrium79NernstEquationsNernstEquations80Liquid/Liquidinterfaceshavebeenclassifiedintotheideal-polarizedinterfaceandno-polarizedinterface.2.2.SingleionGibbsenergyoftransferTATBassumptionLiquid/Liquidinterfaceshave81北京大学电分析课件液液界面电化学及电分析化学简介822.3.SolvationofIonBornequation2.4.Interfacialstructureandtheiontransfermechanism(A)MVNMODEL(B)GSMODEL2.3.SolvationofIon2.4.Interf83北京大学电分析课件液液界面电化学及电分析化学简介84北京大学电分析课件液液界面电化学及电分析化学简介852.5.SolventsandbaseelectrolytesThereareover20organicsolventswhichhavebeentestedintheITIESstudiessofar.AspointedoutbyKorytaet.al.,thefollowingthreerequirementshavebeencommonlyusedtochoosetheorganicsolvent:(1).Thesolubilityofsolventinwaterandwaterinthesolventmustbeverysmall.(2).Thesolventmustbesufficientlypolartopromotesufficientdissociationofthesupportingelectrolyteandthuskeepingenoughconductivityofthesolution.(3).Thedensityofthesolventshoulddiffersignificantlyfromthatofaqueousphaseinordertogetaphysicallystablel/linterface.2.5.Solventsandbaseelectrol86Atpresent,themostcommonlyusedorganicsolventsarenitrobenzene(NB)and1,2-dichloroethane(1,2-DCE).Someothersolventshavebeentriedinthepasttwodecades,forexample,propiophenone,4-isopropyl-1-methyl-2-nitrobenzene,dichloro-methane,nitrotulene,chloroform,anilineetc.Inordertogetmoreflexiblechoice,organicsolventmixtureshavebeenalsoemployed,forexample,nitrobenzene+chlorobenzene,NB+benzonitrileandNB+benzene.Baseelectrolytes:TBATPB(tetrabutylammoniumtetraphenylborate),TBATPBCl,CVTPB,BTPPATPB(Bis[triphenylphosphoranylidene]ammoniumtetraphenylborate)Atpresent,themostcommonly87北京大学电分析课件液液界面电化学及电分析化学简介88北京大学电分析课件液液界面电化学及电分析化学简介893.液/液界面电化学的主要研究方法 及仪器设备Almostalltheinstrumentshavebeenusedtostudyclassicalelectrochemistrycanbeusedtoinvestigatethechargetransferatliquid/Liquidinterfaces.4-electrodepotentiostat--------BigiRdropaqueoussolutiondropping(ascending)electrodetwo-electrodesystem--------microelectrodesRecently,wedevelopedanoveltechniquetostudyITIESwiththree-electrodesetupwiththehelpofthephaseratio.Thus,allelectrochemicallabscandoresearchonthissubjects.3.液/液界面电化学的主要研究方法Almostallth90北京大学电分析课件液液界面电化学及电分析化学简介912-电极系统2-电极系统92应用于液/液界面电化学研究的升水电极-四电极系统应用于液/液界面电化学研究的93北京大学电分析课件液液界面电化学及电分析化学简介94北京大学电分析课件液液界面电化学及电分析化学简介95新的技术,例如:SHG(Secondharmonicgeneration)microelectrodes,micropipettesandnano-pipettesSECMFemto-laserSimulationsThinfilms现已用在L/LInterfaces的研究。各种电化学方法和技术新的技术,例如:各种电化学方法和技术964.液/液界面电化学的现状Structure: MVNModelandGSModelMechanism: FacilitatediontransfermechanismKinetics: Butler-Volmerequation,Marcustheory Nanometeropipettes SECMApplications:
Thinfilms(solarcell,drugdelivery)4.液/液界面电化学的现状97目前国际上液/液界面电化学研究 存在的主要问题1.界面结构未知!MVN模型和混合溶剂层模型(GS)2.可供选择作为有机相的有机溶剂数目有限3.没有很好的获取转移反应动力学的实验手段4.iR(i-电流,R-电阻,iR降是由于溶液中电阻所引起的干扰)降及充电电流较常规电化学更加严重目前国际上液/液界面电化学研究1.界面结构未知!MVN98HowtosolvetheseProblemsMicroelectrodes:SolidandNano-andMicropipettes+ScanningElectrochemicalMicroscopy,SECMHowtosolvetheseProblemsMic99ElectrochemistryatL/LInterfacesArtificialMembrane/ElectrolyteInterfacesBLMArtificialMembraneandBiosensorsModifiedL/LInterfacesMicroelectrodesNano-andMicropipettesSECMElectrochemistryArtificialMe100TheSEMdiagramsofNano-andMicropipettesMicropipettesNanopipettesTheSEMdiagramsofMicropipett101MicropipettesTheta()MicropipetteMicropipettesTheta()Micropip102TheSEMdiagramsofNano-andMicropipettesMicropipettesNanopipettes我们group可以制备内径从几个nm到十几个m的玻璃纳、微米管TheSEMdiagramsofMicropipett103AqueousPhaseOrganicPhaseAqueousPhaseOrganicPhaseAsymmetricDiffusionFieldAqueousPhaseOrganicPhaseAque104TBATPBassupportingelectrolyteinDCETBATPBClassupportingelectrolyteinDCEBTPPATPBassupportingelectrolyteinDCEMicropipetteasatooltodeterminetheionicspecieslimitingthepotentialwindowatL/LInterfacesTBATPB(Tetrabutyalammoniumtetraphenylborate)TBATPBCl(tetrabutyl-ammoniumtetrakis[4-chlorophenyl]borate)BTPPATPB(Bis[triphosphor-anylidene]ammoniumtetraphenyl-borate)1,2-dichloroethane(DCE)TBATPBassupportingTBATPBCl105Ag/AgCl/0.01MTBACl/0.25mMDB18C6+0.01MTBATPBCl//0.01MKCl/AgCl/AgIdentifythedifferentmechanismsAg/AgCl/0.01MTBACl/0.25mMDB18C106ACTTOCTICTIDwowowowoIdentifyofdifferentmechanismsoffacilitatediontransfersACTTOCTICTIDwowowowoIdentifyo107北京大学电分析课件液液界面电化学及电分析化学简介108Idisk=4nFaDCIpip=3.35nFaDCWhyIpipisabout2.63timesbiggerthanIdisk?Silanizationplaysveryimportantrolehere!Anal.Chem.,1998,70,p3155-3161Idisk=4nFaDCIpip=3.35nFaDCW1093.4E-93.4E-9110北京大学电分析课件液液界面电化学及电分析化学简介111Nanometer-sizedL/LInterface纳米管NanopipetAqueousPhaseNanometer-sized纳米管Aqueous112Nano-ITIESkofrom0.1cm/sto10cm/sA54nmradiusB5nmradiusJ.Am.Chem.Soc.,1997,119,8103K+(w)+DB18C6(DCE)=[K+DB18C6](DCE)
Nano-ITIESJ.Am.Chem.Soc.,1997113北京大学电分析课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦作新材料职业学院《医学信号处理专题实验》2023-2024学年第一学期期末试卷
- 武汉体育学院《商务英语口译》2023-2024学年第一学期期末试卷
- 昆明医科大学《生物统计Ⅱ》2023-2024学年第二学期期末试卷
- 辽宁省葫芦岛重点中学2024-2025学年初三下学期4月调研生物试题含解析
- 泉州职业技术大学《儿童舞蹈编创与表演》2023-2024学年第二学期期末试卷
- 湖北医药学院《男生乒乓球》2023-2024学年第二学期期末试卷
- 平凉职业技术学院《BIM造价管理课程设计》2023-2024学年第二学期期末试卷
- 创业企业人力资源开发重点基础知识点
- 创业企业品牌跨界营销案例分析重点基础知识点
- 2024北京首师大附中初二(下)期中数学试题及答案
- 毕业论文-电子密码锁设计
- 双心药物治疗
- 4D厨房设备设施管理责任卡
- GB/T 3655-2022用爱泼斯坦方圈测量电工钢带(片)磁性能的方法
- GB/T 12727-2017核电厂安全级电气设备鉴定
- GB 5009.83-2016食品安全国家标准食品中胡萝卜素的测定
- NS中国移动XXXX年客户满意度调查项目计划书
- 管材检测检测委托单
- 《武术的起源与发展》教学课件
- 二维随机变量边缘分布条件分布课件
- NY∕T 3349-2021 畜禽屠宰加工人员岗位技能要求
评论
0/150
提交评论