版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章
量纲分析和模型试验第七章1第一节量纲分析第二节流动相似的概念第三节相似准则第四节模型设计第一节量纲分析第二节流动相似的概念第三节相似准则第四节2第一节量纲分析第一节量纲分析3量纲分析:是研究自然现象物理量量纲之间固有联系的理论。
量纲分析的作用:(1)导出相似准则数(2)通过试验建立复杂流动的运动规律。量纲分析:4一、量纲和单位
物理量单位的种类称为量纲,量纲也称为因次,表示物理量的本质属性。用符号dim表示。
一个物理量可以用不同的单位度量,但量纲却是唯一的。例如长度、宽度、高度、厚度、深度都可以用米、英尺等长度单位来度量,但是它们的量纲都是长度量纲L。一、量纲和单位5二、基本量纲与导出量纲量纲可分为基本量纲和导出量纲。
基本量纲是指具有独立性的量纲。该量纲不能由其它量纲推导出来,即不依赖于其它量纲。如长度L、质量M、时间T就是相互独立的量纲,它们之间不能互相推导,它们就可以作为基本量纲。
流体力学常用基本量纲为:长度L、质量M、时间T二、基本量纲与导出量纲量纲可分为基本量纲和导出量纲。6
导出量纲是指由基本量纲推导出的
在各种力学问题中,任何一个物理量的量纲都可以用三个基本量纲的指数乘积形式表示,这称为诱导量纲公式,即在各种力学问题中,任何一个物理量的量纲都可以用三个基本7三、无量纲量
在量纲分析中,有一些物理量的量纲为1,称为无量纲量,用M0L0T0表示。无量纲量就是一个数(无量纲量具有数值的特性),但可以把它看成由几个物理量组合而成的综合表达。例如雷诺数的量纲:三、无量纲量在量纲分析中,有一些物理量的量纲为1,8四、量纲齐次性原理
量纲齐次性原理是量纲分析的基本原理,量纲齐次性原理是指一个物理现象或一个物理过程用一个物理方程表示时,方程中每项的量纲应该都是和谐的、一致的、齐次的,也叫做量纲和谐性原理或量纲一致性原理。
量纲齐次性原理表明:在某一流动现象中各相关物理量可组成若干个量纲齐次的组合群,它反映了该流动现象中各相关物理量在量纲上的相互制约关系,这是对某一流动现象中相关的物理量做量纲分析的物理基础。四、量纲齐次性原理量纲齐次性原理是量纲分析的基本原理9五、量纲分析与π定律量纲分析是根据描述流体流动的变量和方程量纲一致性原理找出影响流动的物理量,再进行量纲分析和变量组合以获取描述流动的无量纲的组合参数的一种分析方法,量纲分析是流体力学研究中最重要的数学工具之一。量纲分析与相似原理紧密联系,虽然两者所采取的途径不相同,但实际上是一致的,他们的研究对象相同,所得到的结论也是一致的。1.量纲分析
五、量纲分析与π定律量纲分析是根据描述流体流动的变102.π定律(布金汉定理)
对于某个物理现象或过程,如果存在有n个变量互为函数关系,
而这些变量含有m个基本量纲,可把这n个变量转换成为有(n-m)=i个无量纲量的函数关系式
这样可以表达出物理方程的明确的量间关系,并把方程中的变量数减少了m个,更为概括集中表示物理过程或物理现象的内在关系。2.π定律(布金汉定理)对于某个物理现象或11例:经初步分析知道,在水平等直径圆管道内流体流动的压降p与下列因素有关:管径d、管长l、管壁粗糙度、管内流体密度、流体的动力粘度,以及断面平均流速v有关。试用定理推出压降p的表达形式。解:所求解问题的原隐函数关系式为f(p,d,l,,,,v)=0有量纲的物理量个数n=7,此问题的基本量纲有L、M、T三个,m=3,按定理,这n个变量转换成有n-m=4个无量纲量的函数关系式F(1,2,3,4)=0
从7个物理量中选出基本物理量3个,如取、d、v,而其余物理量用基本物理量的幂次乘积形式表示。例:经初步分析知道,在水平等直径圆管道内流体流动的压降p与121=l1v1d12=2v2d23=3v3d34=p4v4d4将上述表达式写成量纲形式[1]=L(ML-3)1(LT-1)1L1=M0L0T
(1)[2]=L(ML-3)2(LT-1)2L2=M0L0T0(2)[3]=ML-1T-1(ML-3)3(LT-1)3L3=M0L0T0
(3)[4]=ML-1T-2(ML-3)4(LT-1)4L4=M0L0T0(4)求解方程(1)M:1=0T:1=0L:-31+1+1+1=0→1=-1所以1=l/d求解方程(2)M:2=0T:2=0L:1-32+2+2=0→2=-1所以2=/d1=l1v1d12=2v2d213求解方程(3)M:1+3=0→3=-1T:-1-3=0→3=-1L:-1-33+3+3=0→3=-1所以3=/vd=1/Re求解方程(4)M:1+4=0→4=-1T:-2-4=0→4=-2L:-1-34+4+4=0→4=0所以4=p/v2因此,所解问题用无量纲数表示的方程为F(l/d,/d,1/Re,p/v2)=0求解方程(3)M:1+3=0→3=-114
至此,问题求解结束,进一步对上式整理规范。由上式可知p/v2与其余三个无量纲数有关,那么
p/v2=F1(l/d,/d,1/Re)=(l/d)F2(/d,1/Re)
p/g=p/=(l/d)(v2/2g)F2(/d,1/Re)令=
F2(/d,1/Re)p/=(l/d)(v2/2g)以上就是达西公式,为沿程阻力系数,表示了等直圆管中流动流体的压降与沿程阻力系数、管长、速度水头成正比,与管径成反比。至此,问题求解结束,进一步对上式整理规范。由上15
从以上例题可以看出,利用定理,可以在仅知与物理过程有关物理量的情况下,求出表达该物理过程关系式的基本结构形式。用量纲分析法所归纳出的式子往往还带有待定的系数,这个系数要通过实验来确定。而量纲分析法求解中已指定如何用实验来确定这个系数。因此,量纲分析法也是流体力学实验的理论基础。从以上例题可以看出,利用定理,可以在仅知与物16第二节流动相似的概念第二节流动相似的概念17
采用模型试验和理论分析相结合的方式是解决问题的有效途径之一,在把模型中的实测资料引用到原型中会产生下述问题:
(1)如何设计模型才能是模型和原型中的流动相似?
(2)如何把模型中观测的流动现象和数据换算到原型中去?采用模型试验和理论分析相结合的方式是解决18
相似原理提供了解决这两个问题的理论基础,即实现模型与原型的流动相似:两个流动中,对应点上同名物理量具有各自一定的比例。流动相似包含三类表征流动过程的物理量的相似:流场的几何形状(包括边界层)、流体微团的运动状态、流体微团的动力性质。相似原理提供了解决这两个问题的理论基础,19
相似的定义:如果两个同一类的物理现象,在对应的时空点,各标量物理量的大小成比例,各向量物理量除大小成比例外,且方向相同,则称两个现象是相似的。要保证两个流动问题的力学相似,必须是两个流动几何相似,运动相似,动力相似,以及两个流动的边界条件和起始条件相似。相似的定义:如果两个同一类的物理现象,在对应的时20一、相似的基本概念1.几何相似
几何相似是指原型与模型保持几何形状和几何尺寸相似,也就是原型和模型的任何一个相应线性长度保持一定的比例关系。
长度比尺面积比尺体积比尺一、相似的基本概念长度比尺面积比尺体积比尺212.运动相似
运动相似是指原型与模型两个流动中任何对应质点的迹线是几何相似的,而且任何对应质点流过相应线段所需的时间又是具有同一比例的。或者说两个流动的速度场(或加速度场)是几何相似的。设时间比尺:
则速度比尺
加速度比尺2.运动相似223.动力相似两个流动在对应点上,对应瞬时,质点受到同种性质的外力作用,且对应的同名力方向相同,大小成同一比例。
总压力切向力重力惯性力力的比例尺3.动力相似总压力切向力重惯性力力的比例尺23密度比例尺:基本比例尺:λρ,λl,λv其他如:力的比例尺,力矩的比例尺,压强的比例尺,功率比例尺,动力黏度比例尺密度比例尺:基本比例尺:λρ,λl,λv其他如:力的比例尺,24如能保证上述三个相似,则说明流动相似。从分析可看出:几何相似是流动力学相似的前提条件,动力相似是决定运动相似的主导因素,运动相似是几何相似和动力相似的表现或是必然结果。4.三种相似条件的关系模型与原型的几何相似、运动相似和动力相似是两个流场完全相似的重要特征。如能保证上述三个相似,则说明流动相似。从分析可25二、相似理论基本定理相似理论建立在三个相似定理的基础上,它是指导模型实验的基本理论。1.相似第一定理相似第一定理对相似现象的这种性质明确表示为:彼此相似的现象,相同名称的相似准数分别相等。它回答了在实验中应当测量哪些物理量牛顿数(Ne),雷诺数(Re),欧拉数(Eu)、弗洛德数(Fr)二、相似理论基本定理相似理论建立在三个相似定理262.相似第二定理
描述相似现象的物理量组成的相似准数,相互间存在函数关系。相似第二定理回答相似准数之间的关系问题例如:在决定动力相似的三个准数Eu,Re,Fr中,也必有一个是被动的,相互之间存在着依赖关系2.相似第二定理描述相似现象的物理量组成的相似273.相似第三定理凡是单值性条件相似,定型准则数值相等的那些同类现象必定彼此相似相似第三定理回答了现象相似的充分和必要条件
单值性条件是指那些有关流动过程特点的条件。单值性相似包括几何相似、边界相似和初始条件相似,以及由单值性条件中的物理量所组成的相似准则在数值上相等。3.相似第三定理凡是单值性条件相似,定型准则数值相等的那些28第三节相似准则第三节相似准则29一、相似准则即:在两种相似的流动中,原型与模型相应点的牛顿数是相等的。1.牛顿相似准则设原型与模型相应点上的惯性力为FIn和FIm,特征惯性力为FIn0和FIm0。根据动力相似条件:以符号牛顿数Ne表示比值,则有:一、相似准则即:在两种相似的流动中,原型与模型相应点的牛顿数302.雷诺准则雷诺数是惯性力Fl与黏性力Fυ的比值,即
如果在两种相似的流动中,当黏性力起主导作用时,原型流动和模型流动的相应点上雷诺数相等。这就是黏性力相似准则,也称雷诺相似准则。原型和模型相应点上的惯性力和黏性力的量纲形式为如果两种流动是相似的,则有或即2.雷诺准则雷诺数是惯性力Fl与黏性力Fυ的比值,即313.弗洛德准则
弗洛德数Fr表征了重力对动力相似的影响,是惯性力Fl与重力FG的比值:弗洛德准则适应于重力起主导作用的流动设原型和模型相应点上的重力FGn和FGm分别为如果两种流动是动力相似的,则有即3.弗洛德准则弗洛德数Fr表征了重力对动力相324.Eu数(欧拉数)Eu数是压力与惯性力之比流体流动以动水总压力为主要作用力的情况:当压力起主要作用时,动力相似有:
一般情况下,两流体的雷诺数相等,欧拉数也相等;两流体的弗汝德数相等,欧拉数也相等。只有出现负压或存在气蚀情况的液体,才需考虑欧拉数相等来保证液流相似。4.Eu数(欧拉数)Eu数是压力与惯性力之比流体流动以动335.Ma数(马赫数)Ma数为惯性力与压缩力之比
当弹性力起主要作用时,如水击、空气动力学中的亚音速或超音速运动等,动力相似有:5.Ma数(马赫数)Ma数为惯性力与压缩力之比
当弹34
综上所述,动力相似可以用相似准数表示,若原型和模型流动动力相似,各同名相似准数均相等,如果满足则称为完全的动力相似。但是事实上,不是所有的相似准数之间都是相容的,满足了甲,不一定就能满足乙。因此,要使两者达到完全的动力相似,实际上办不到,我们寻求的是主要动力相似。要达到主要动力相似就应该根据所研究或所需解决的原型流动性质来确定决定性相似准数。
35第四节模型设计第四节模型设计36最权威的实验就是原型或实体实验,但随着科学技术的发展,出于经济和技术上的限制,这种实验将会遇到很大困难,特别是原型尚未出现之前,只能通过模型实验做出预测。最权威的实验就是原型或实体实验,但随着科学371.重力起主导作用的水力模型对于重力起主导作用的流动,应保证模型和原型的弗洛德数相等按照弗洛德相似准则可得出流速比例尺:通常,1.重力起主导作用的水力模型对于重力起主导作用的流动,应保38流量比尺:时间比尺:力的比尺:当模型和原型的流体相同时,流量比尺:时间比尺:力的比尺:当模型和原型的流体相同时,39对于黏性力起主导作用的流动应保证模型与原型的雷诺数相等,需按雷诺相似准则设计模型,2.黏性力起主导作用的水力模型若采用与原型相同的介质流速比尺为流量比尺为时间比尺为力的比尺为对于黏性力起主导作用的流动应保证模型与原型的雷诺数相40对于重力和黏性力同时起主要作用的水流,若保证模型和原型中的重力和黏性力同时相似,应同时满足弗劳德数和雷诺数准则。3.重力、黏性力共同作用的水力模型重力和黏滞力同时作用时:重力作用要求流速比尺黏滞力作用要求流速比尺必须同时成立或上式表明:要实现重力与黏性力同时相似,模型与原型必须为不同介质,则要求模型中液体的运动黏度要缩小到原型运动黏滞系数的1.5倍。对于重力和黏性力同时起主要作用的水流,若保证模型和原41因此,一般来说,同时满足上述两个相似准则数的模型,是不易做到的。但在水流处于湍流阻力平方区时,雷诺准则不用考虑只考虑弗劳德准则即可。因此,一般来说,同时满足上述两个相似准则数的模型,是不42第七章
量纲分析和模型试验第七章43第一节量纲分析第二节流动相似的概念第三节相似准则第四节模型设计第一节量纲分析第二节流动相似的概念第三节相似准则第四节44第一节量纲分析第一节量纲分析45量纲分析:是研究自然现象物理量量纲之间固有联系的理论。
量纲分析的作用:(1)导出相似准则数(2)通过试验建立复杂流动的运动规律。量纲分析:46一、量纲和单位
物理量单位的种类称为量纲,量纲也称为因次,表示物理量的本质属性。用符号dim表示。
一个物理量可以用不同的单位度量,但量纲却是唯一的。例如长度、宽度、高度、厚度、深度都可以用米、英尺等长度单位来度量,但是它们的量纲都是长度量纲L。一、量纲和单位47二、基本量纲与导出量纲量纲可分为基本量纲和导出量纲。
基本量纲是指具有独立性的量纲。该量纲不能由其它量纲推导出来,即不依赖于其它量纲。如长度L、质量M、时间T就是相互独立的量纲,它们之间不能互相推导,它们就可以作为基本量纲。
流体力学常用基本量纲为:长度L、质量M、时间T二、基本量纲与导出量纲量纲可分为基本量纲和导出量纲。48
导出量纲是指由基本量纲推导出的
在各种力学问题中,任何一个物理量的量纲都可以用三个基本量纲的指数乘积形式表示,这称为诱导量纲公式,即在各种力学问题中,任何一个物理量的量纲都可以用三个基本49三、无量纲量
在量纲分析中,有一些物理量的量纲为1,称为无量纲量,用M0L0T0表示。无量纲量就是一个数(无量纲量具有数值的特性),但可以把它看成由几个物理量组合而成的综合表达。例如雷诺数的量纲:三、无量纲量在量纲分析中,有一些物理量的量纲为1,50四、量纲齐次性原理
量纲齐次性原理是量纲分析的基本原理,量纲齐次性原理是指一个物理现象或一个物理过程用一个物理方程表示时,方程中每项的量纲应该都是和谐的、一致的、齐次的,也叫做量纲和谐性原理或量纲一致性原理。
量纲齐次性原理表明:在某一流动现象中各相关物理量可组成若干个量纲齐次的组合群,它反映了该流动现象中各相关物理量在量纲上的相互制约关系,这是对某一流动现象中相关的物理量做量纲分析的物理基础。四、量纲齐次性原理量纲齐次性原理是量纲分析的基本原理51五、量纲分析与π定律量纲分析是根据描述流体流动的变量和方程量纲一致性原理找出影响流动的物理量,再进行量纲分析和变量组合以获取描述流动的无量纲的组合参数的一种分析方法,量纲分析是流体力学研究中最重要的数学工具之一。量纲分析与相似原理紧密联系,虽然两者所采取的途径不相同,但实际上是一致的,他们的研究对象相同,所得到的结论也是一致的。1.量纲分析
五、量纲分析与π定律量纲分析是根据描述流体流动的变522.π定律(布金汉定理)
对于某个物理现象或过程,如果存在有n个变量互为函数关系,
而这些变量含有m个基本量纲,可把这n个变量转换成为有(n-m)=i个无量纲量的函数关系式
这样可以表达出物理方程的明确的量间关系,并把方程中的变量数减少了m个,更为概括集中表示物理过程或物理现象的内在关系。2.π定律(布金汉定理)对于某个物理现象或53例:经初步分析知道,在水平等直径圆管道内流体流动的压降p与下列因素有关:管径d、管长l、管壁粗糙度、管内流体密度、流体的动力粘度,以及断面平均流速v有关。试用定理推出压降p的表达形式。解:所求解问题的原隐函数关系式为f(p,d,l,,,,v)=0有量纲的物理量个数n=7,此问题的基本量纲有L、M、T三个,m=3,按定理,这n个变量转换成有n-m=4个无量纲量的函数关系式F(1,2,3,4)=0
从7个物理量中选出基本物理量3个,如取、d、v,而其余物理量用基本物理量的幂次乘积形式表示。例:经初步分析知道,在水平等直径圆管道内流体流动的压降p与541=l1v1d12=2v2d23=3v3d34=p4v4d4将上述表达式写成量纲形式[1]=L(ML-3)1(LT-1)1L1=M0L0T
(1)[2]=L(ML-3)2(LT-1)2L2=M0L0T0(2)[3]=ML-1T-1(ML-3)3(LT-1)3L3=M0L0T0
(3)[4]=ML-1T-2(ML-3)4(LT-1)4L4=M0L0T0(4)求解方程(1)M:1=0T:1=0L:-31+1+1+1=0→1=-1所以1=l/d求解方程(2)M:2=0T:2=0L:1-32+2+2=0→2=-1所以2=/d1=l1v1d12=2v2d255求解方程(3)M:1+3=0→3=-1T:-1-3=0→3=-1L:-1-33+3+3=0→3=-1所以3=/vd=1/Re求解方程(4)M:1+4=0→4=-1T:-2-4=0→4=-2L:-1-34+4+4=0→4=0所以4=p/v2因此,所解问题用无量纲数表示的方程为F(l/d,/d,1/Re,p/v2)=0求解方程(3)M:1+3=0→3=-156
至此,问题求解结束,进一步对上式整理规范。由上式可知p/v2与其余三个无量纲数有关,那么
p/v2=F1(l/d,/d,1/Re)=(l/d)F2(/d,1/Re)
p/g=p/=(l/d)(v2/2g)F2(/d,1/Re)令=
F2(/d,1/Re)p/=(l/d)(v2/2g)以上就是达西公式,为沿程阻力系数,表示了等直圆管中流动流体的压降与沿程阻力系数、管长、速度水头成正比,与管径成反比。至此,问题求解结束,进一步对上式整理规范。由上57
从以上例题可以看出,利用定理,可以在仅知与物理过程有关物理量的情况下,求出表达该物理过程关系式的基本结构形式。用量纲分析法所归纳出的式子往往还带有待定的系数,这个系数要通过实验来确定。而量纲分析法求解中已指定如何用实验来确定这个系数。因此,量纲分析法也是流体力学实验的理论基础。从以上例题可以看出,利用定理,可以在仅知与物58第二节流动相似的概念第二节流动相似的概念59
采用模型试验和理论分析相结合的方式是解决问题的有效途径之一,在把模型中的实测资料引用到原型中会产生下述问题:
(1)如何设计模型才能是模型和原型中的流动相似?
(2)如何把模型中观测的流动现象和数据换算到原型中去?采用模型试验和理论分析相结合的方式是解决60
相似原理提供了解决这两个问题的理论基础,即实现模型与原型的流动相似:两个流动中,对应点上同名物理量具有各自一定的比例。流动相似包含三类表征流动过程的物理量的相似:流场的几何形状(包括边界层)、流体微团的运动状态、流体微团的动力性质。相似原理提供了解决这两个问题的理论基础,61
相似的定义:如果两个同一类的物理现象,在对应的时空点,各标量物理量的大小成比例,各向量物理量除大小成比例外,且方向相同,则称两个现象是相似的。要保证两个流动问题的力学相似,必须是两个流动几何相似,运动相似,动力相似,以及两个流动的边界条件和起始条件相似。相似的定义:如果两个同一类的物理现象,在对应的时62一、相似的基本概念1.几何相似
几何相似是指原型与模型保持几何形状和几何尺寸相似,也就是原型和模型的任何一个相应线性长度保持一定的比例关系。
长度比尺面积比尺体积比尺一、相似的基本概念长度比尺面积比尺体积比尺632.运动相似
运动相似是指原型与模型两个流动中任何对应质点的迹线是几何相似的,而且任何对应质点流过相应线段所需的时间又是具有同一比例的。或者说两个流动的速度场(或加速度场)是几何相似的。设时间比尺:
则速度比尺
加速度比尺2.运动相似643.动力相似两个流动在对应点上,对应瞬时,质点受到同种性质的外力作用,且对应的同名力方向相同,大小成同一比例。
总压力切向力重力惯性力力的比例尺3.动力相似总压力切向力重惯性力力的比例尺65密度比例尺:基本比例尺:λρ,λl,λv其他如:力的比例尺,力矩的比例尺,压强的比例尺,功率比例尺,动力黏度比例尺密度比例尺:基本比例尺:λρ,λl,λv其他如:力的比例尺,66如能保证上述三个相似,则说明流动相似。从分析可看出:几何相似是流动力学相似的前提条件,动力相似是决定运动相似的主导因素,运动相似是几何相似和动力相似的表现或是必然结果。4.三种相似条件的关系模型与原型的几何相似、运动相似和动力相似是两个流场完全相似的重要特征。如能保证上述三个相似,则说明流动相似。从分析可67二、相似理论基本定理相似理论建立在三个相似定理的基础上,它是指导模型实验的基本理论。1.相似第一定理相似第一定理对相似现象的这种性质明确表示为:彼此相似的现象,相同名称的相似准数分别相等。它回答了在实验中应当测量哪些物理量牛顿数(Ne),雷诺数(Re),欧拉数(Eu)、弗洛德数(Fr)二、相似理论基本定理相似理论建立在三个相似定理682.相似第二定理
描述相似现象的物理量组成的相似准数,相互间存在函数关系。相似第二定理回答相似准数之间的关系问题例如:在决定动力相似的三个准数Eu,Re,Fr中,也必有一个是被动的,相互之间存在着依赖关系2.相似第二定理描述相似现象的物理量组成的相似693.相似第三定理凡是单值性条件相似,定型准则数值相等的那些同类现象必定彼此相似相似第三定理回答了现象相似的充分和必要条件
单值性条件是指那些有关流动过程特点的条件。单值性相似包括几何相似、边界相似和初始条件相似,以及由单值性条件中的物理量所组成的相似准则在数值上相等。3.相似第三定理凡是单值性条件相似,定型准则数值相等的那些70第三节相似准则第三节相似准则71一、相似准则即:在两种相似的流动中,原型与模型相应点的牛顿数是相等的。1.牛顿相似准则设原型与模型相应点上的惯性力为FIn和FIm,特征惯性力为FIn0和FIm0。根据动力相似条件:以符号牛顿数Ne表示比值,则有:一、相似准则即:在两种相似的流动中,原型与模型相应点的牛顿数722.雷诺准则雷诺数是惯性力Fl与黏性力Fυ的比值,即
如果在两种相似的流动中,当黏性力起主导作用时,原型流动和模型流动的相应点上雷诺数相等。这就是黏性力相似准则,也称雷诺相似准则。原型和模型相应点上的惯性力和黏性力的量纲形式为如果两种流动是相似的,则有或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年冀少新版八年级生物上册阶段测试试卷含答案
- 2025年中图版选择性必修1物理下册月考试卷含答案
- 2024游泳池健康水疗服务承包合同模板2篇
- 2025年粤教新版必修1物理下册月考试卷含答案
- 2023年会计学考试复习题
- 2024计划中部长岗位安全生产职责合同版B版
- 2024智能家居拓展训练合同
- 2024版涵洞工程劳务分包合同
- 2024车辆试驾免租合同范本版B版
- 幼儿园中班元旦活动
- 建筑智能化项目系统试运行记录表
- 三年级上册寒假每日一练
- (正式版)SHT 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范
- 重庆工作报告
- 教科版科学四年级下册第二单元《电路》教学计划
- 无人机驾驶员航空知识手册培训教材(多旋翼)
- 天津市部分区2023-2024学年六年级上学期期末数学试卷
- 员工年度工作计划范文
- 洗衣店行业创业计划书
- 医院规划发展部社会工作科职责
- 2024抗菌药物分级管理及临床合理应用考核试题及答案
评论
0/150
提交评论