公理化体系样本_第1页
公理化体系样本_第2页
公理化体系样本_第3页
公理化体系样本_第4页
公理化体系样本_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。公理化方法公理化方法公理化思想任何真正的科学都始于原理,以它们为基础,并由之而导出一切结果来随着假设演绎模型法的进一步发展,经济学日益走向公理化方法。公理化是一种数学方法。最早出现在二千多年前的欧几里德几何学中,当时认为”公理’(如两点之问可连一直线)是一种不需要证明的自明之理,而其它所谓”定理”(如三对应边相等的陌个三角形垒等)则是需要由公理出发来证明的,18世纪德国哲学家康德认为,欧几里德几何的公理是人们生来就有的先验知识,19世纪末,德国数学家希尔伯特(DavidHilbert)在她的几何基础研究中系统地挺出r数学的公理化方法。简介恩格斯曾说过:数学上的所谓公理,是数学需要用作自己出发点的少数思想上的规定。公理化方法能系统的总结数学知识、清楚地揭示数学的理论基础,有利于比较各个数学分支的本质异同,促进新数学理论的建立和发展。现代科学发展的基本特点之一,就是科学理论的数学化,而公理化是科学理论成熟和数学化的一个主要特征。公理化方法不但在现代数学和数理逻辑中广泛应用,而且已经远远超出数学的范围,渗透到其它自然科学领域甚至某些社会科学部门,并在其中起着重要作用.历史发展产生公理化方法发展的第一阶段是由亚里士多德的完全三段论到欧几里得《几何原本》的问世.大约在公元前3世纪,希腊哲学家和逻辑学家亚里斯多德总结了几何学与逻辑学的丰富资料,系统地研究了三段论,以数学及其它演绎的学科为例,把完全三段论作为公理,由此推导出其它所有三段论法,从而使整个三段论体系成为一个公理系统.因此,亚里斯多德在历史上提出了第一个成文的公理系统.亚里斯多德的思想方法深深地影响了当时的希腊数学家欧几里得.欧几里得把形式逻辑的公理演绎方法应用于几何学,从而完成了数学史上的重要著作《几何原本》.她从古代的量地术和关于几何形体的原始直观中,用抽象分析方法提炼出一系列基本概念和公理.她总结概括出10个基本命题,其中有5个公设和5条公理,然后由此出发,运用演绎方法将当时所知的全部几何学知识推演出来,整理成为演绎体系.《几何原本》一书把亚里斯多德初步总结出来的公理化方法应用于数学,整理、总结和发展了希腊古典时期的大量数学知识,在数学发展史上树立了一座不朽的丰碑.公理学研究的对象、性质和关系称为”论域”,这些对象、性质和关系,由初始概念表示.例如欧氏《几何原本》中只需取”点”、”直线”、”平面”;”在……之上”、”在……之间”、”叠合”作为初始概念.前三个概念所表示的三类对象和后三个概念所表示的三种关系就是这种几何的论域.按照”一个公理系统只有一个论域”的观点建立起来的公理学,称为实质公理学.这种公理学是对经验知识的系统整理,公理一般具有自明性.因此,欧氏《几何原本》就是实质公理学的典范.发展公理化方法的发展大致经历了这样三个阶段:实质(或实体)公理化阶段、形式公理化阶段和纯形式公理化阶段,用它们建构起来的理论体系典范分别是《几何原本》、《几何基础》和ZFC公理系统。《几何原本》虽然开创了数学公理化方法的先河,然而它的公理系统还有许多不够完善的地方,其主要表现在以下几个方面:(1)有些定义使用了一些还未确定涵义的概念;(2)有些定义是多余的;(3)有些定理的证明过程往往依赖于图形的直观;(4)有的公理(即平行公理)是否可用其它公理来证明或代替.这些问题成为后来许多数学家研究的课题,并经过这些问题的研究,使公理化方法不断完善,并促进了数学科学的发展.第五公设(即平行公设)内容复杂,陈述累赘,缺乏象其它公设和公理那样的说服力,并不自明.因此,它能否正确地反映空间形式的性质,引起了古代学者们的怀疑.从古希腊时代到公元18世纪,人们经过不同的途径和方法对这一问题进行了大量的研究工作,其中萨克里(Saccheri,1667—1733)和兰勃特(Lambert,1728-1777)等人考虑了两个可能的与平行公设相反的假设,试图证明出平行公设,可是她们的努力均归于失败.然而,在这些失败中却引出了一串与第五公设相等价的新命题和定理,即非欧几何的公理和定理,它预示了一种新的几何体系可能产生.19世纪年轻的俄国数学家罗巴切夫斯基(Лобачевский1792-1856)产生了与前人完全不同的信念:首先,她认为第五公设不能以其余的公理作为定理来证明;其次,除掉第五公设成立的欧氏几何之外,还可能有第五公设不成立的新几何系统存在.于是,她在剔除第五公设而保留欧氏几何其余公理的前提下,引进与第五公设相反的公理,从而构造了一个全新的几何系统,它与欧氏几何系统相并列.后来人们又证明了这两个部分地相矛盾的几何系统竟是相对相容的,即假定其中之一无矛盾,则另一个必定无矛盾,这样以来,只要这两个系统是无矛盾的,第五公设与欧氏系统的其余公理就必定独立无关.现在人们就用罗巴切夫斯基的名字命名了这一新的几何学,并把一切不同于欧氏几何公理系统的几何系统统称为非欧几何.非欧几何的建立在数学史上具有划时代的意义,标志着人们对空间形式的认识发生了飞跃,从直观空间上升到抽象空间.在建立非欧几何的过程中,公理化方法得到了进一步的发展和完善.形式化德国数学家帕斯(MoritzPasch,1843-1930)经过对射影几何公理化基础的纯逻辑的探讨,第一次从理论上提出了形式公理学的思想.她认为,几何学如果要成为一门真正的演绎科学,最根本的是推导的进行必须完全独立于几何概念的涵义,同样地也必须不以图形为依据,而所考虑的只能是被命题或定义所确定的几何概念之间的关系.就是说,一个公理系统必然要有本系统里不定义的概念,经过这些概念就能够给其它概念下定义,而不定义概念的全部特征必须由公理表示出来.公理能够说是不定义概念的隐定义.有些公理虽然是由经验提出来的,但当选出一组公理之后,必须不再涉及经验及物理意义.公理决不是自明的真理,而是用以产生任一特殊几何的假定.帕斯的这些思想已经表示了形式公理系统的特征.随着数学的深入研究和射影几何公理系统的建立,形式公理学的概念已经成熟.1899年希尔伯特《几何学基础》一书的发表,不但给出了欧氏几何的一个形式公理系统,而且解决了公理化方法的一系列逻辑理论问题.这本著作成为形式公理学的奠基著作.希尔伯特几何公理系统,除了有几何模型外,还能够有其它模型(如算术模型),因此它是一个形式公理系统,能够把其初始概念和公理看成是没有数学内容的,数学内容是经过解释赋予它们的,初始概念和公理完全能够用形式语言来陈述.因此,自从《几何学基础》问世以后,不但公理化方法进入了数学的其它各个分支,而且也把公理化方法本身推向了形式化的阶段.作用意义分析、总结数学知识当一门科学积累了相当丰富的经验知识,需要按照逻辑顺序加以综合整理,使之条理化、系统化,上升到理性认识的时候,公理化方法便是一种有效的手段.如近代数学中的群论,便经历了一个公理化的过程.当人们分别研究了许多具体的群结构以后,发现了它们具有基本的共同属性,就用一个满足一定条件的公理集合来定义群,形成一个群的公理系统,并在这个系统上展开群的理论,推导出一系列定理.数学研究的基本方法不但对建立科学理论体系,训练人的逻辑推理能力,系统地传授科学知识,以及推广科学理论的应用等方面起到有益的作用,而且对于进一步发展科学理论也有独特的作用.例如在代数方面,由于公理化方法的应用,在群论、域论、理想论等理论部门形成了一系列新的概念,建立了一系列新的联系并导致了一系列深远的结果;在几何方面,由于对平行公设的研究导致了非欧几何的创立.因此,公理化方法也是在理论上探索事物发展规律,作出新的发现和预见的一种重要方法.科学研究的对象介乎于逻辑学和数学之间的边缘学科——数理逻辑,用数学方法研究思维过程中的逻辑规律,也系统地研究数学中的逻辑方法.因此,数学中的公理方法是数理逻辑所研究的一个重要内容.由于数理逻辑是用数学方法研究推理过程的,它对公理化方法进行研究,一方面使公理化方法向着更加形式化和精确化的方向发展,一方面把人的某些思维形式,特别是逻辑推理形式加以公理化,符号化.这种研究使数学工作者增进了使用逻辑方法的自觉性.示范作用任何一门科学都不但仅是搜集资料,也决不是一大堆事实及材料的简单积累,而都是有其自身的出发点和符合一定规则的逻辑体系.公理化方法对现代理论力学及各门自然科学理论的表述方法都起到了积极的借鉴作用.例如牛顿在她的《自然哲学的数学原理》巨著中,系统地运用公理化方法表述了经典力学理论体系;本世纪40年代波兰的巴拿赫完成了理论力学的公理化;爱因斯坦运用公理化方法创立了相对论理论体系.狭义相对论的出发点是两个基本假设:相对性原理和光速不变原理.爱因斯坦以此为前提,逻辑地演绎出四个推论:”尺缩效应”、”钟慢效应”、”质量增大效应”和”关系式”.这些就是爱因斯坦运用公理化方法,创立的狭义相对论完整理论体系的精髓.基本要求公理是对诸基本概念相互关系的规定,这些规定必须是必要的而且是合理的.因此,一个严格完善的公理系统,对于公理的选取和设置,必须具备如下三个基本要求:相容性这一要求是指在一个公理系统中,不允许同时能证明某一定理及其否定理.反之,如果能从该公理系统中导出命题A和否命题非A(记作-A),从A与-A并存就说明出现了矛盾,而矛盾的出现归根到底是由于公理系统本身存在着矛盾的认识,这是思维规律所不容许的.因此,公理系统的无矛盾性要求是一个基本要求,任何学科,理论体系都必须满足这个要求.独立性这一要求是指在一个公理系统中的每一条公理都独立存在,不允许有一条公理能用其它公理把它推导出来,同时使公理的数目减少到最低限度.完备性这就是要求确保从公理系统中能推出所研究的数学分支的全部命题,也就是说,必要的公理不能减少,否则这个数学分支的许多真实命题将得不到理论的证明或者造成一些命题的证明没有充分的理由.从理论上讲,一个公理系统的上述三条要求是必要的,同时也是合理的.至于某个所讨论的公理系统是否满足或能否满足上述要求,甚至能否在理论上证明满足上述要求的公理系统确实存在等,则是另外一回事了.应该指出的是,对于一个较复杂的公理体系来说,要逐一验证这三条要求相当困难,甚至至今不能彻底实现.方法运用1.要积累大量的经验、数据和资料,对这些经验资料进行分析归纳,使之系统化,最后上升为理论.因为公理系统的建立是以大量的事实为基础,以丰富的经验和已有的科学知识为前提的,设此无彼.2.数学公理化的目的是要把一门数学整理成为一个演绎系统,而这一系统的出发点就是一组基本概念和公理.因此,要建立一门数学的演绎系统,就要在第一步的基础上,从原有的资料、数据和经验中选择一些基本概念和确定一组公理,然后由此来定义其它有关概念并证明有关命题.选取的基本概念是不定义概念,必须是无法用更原始、更简单的概念去确定其涵义的,也就是说,它是高度纯化的抽象,是最原始最简单的思想规定.3.在确定了基本概念和公理之后,就要由此出发,经过演绎推理,将一门数学展开成一个严格的理论系统.也就是说,对系统中的每一概念予以定义,而每一个定义中引用的概念必须是基本概念或已定义过的概念;对其它每一命题都给予证明,而在证明中作为论据的命题必须是公理或者已经证明为真实的定理.因此,一门数学的演绎系统就是这门数学的基本概念、公理和定理所构成的逻辑的链条.在上述过程中,从认识论的角度来看,任何公理系统的原始概念和公理的选取必须反映现实对象的本质和关系.就是说,应该有它真实的直观背景而不是凭空臆造.其次,从逻辑的角度看,则不能认为一些概念和公理的任意罗列就能构成一个合理的公理系统,而一个有意义的公理系统必须是一个逻辑相容的体系.公理证明公理系统一个公理系统的相容性是至关重要的,因为一个理论体系不能矛盾百出.而独立性和完备性的要求则是次要的.因为在一个理论体系中,如果有多余的公理,对于理论的展开没什么妨碍;如果独立的公理不够用,数学史上常常补充一些公理,逐步使之完备.下面仅就公理系统的相容性证明作一介绍.产生背景关于相容性征明这一概念的产生和历史发展的背景是这样的:自从罗巴切夫斯基几何诞生后,由于罗氏平行公理(过平面上一已知直线外的一点至少能够引两条直线与该已知直线平行)如此地为常识所不容,这才真正激起了人们对于数学系统的无矛盾性证明的兴趣和重视.后来,庞卡莱(Poincare`,1854-1912)在欧氏半平面上构造了罗氏几何的模型,把罗氏系统的相容性证明经过一个模型化归为欧氏系统的相容性证明,但却由此导致了人们对欧氏系统相容性的重重疑虑.幸亏那时已经有了解析几何,这就等于在实数系统中构造了一个欧氏几何的模型.这就把欧氏几何的无矛盾性归结到了实数论的相容性.那么实数论的相容性如何?戴德金(Dedekind,1831-1916)把实数定义为有理数的分划,也即有理数的无穷集合,因而把这个无矛盾性归结到了自然数系统的无矛盾性.又由于弗雷格(Frege,1848-1925)的自然数的概念是借助集合的概念加以定义的,因此,归来归去还是把矛盾集中到集合论那里去了.那么集合论的相容性如何?事实上,集合论的相容性正处于严重的”危机”之中,以致这种相容性的证明至今还未解决.庞卡莱模型庞卡莱为证明罗氏几何的相容性,在欧氏系统中构造了一个罗氏几何的模型.即在欧氏平面上划一条直线a将其分成上、下两个半平面,把不包括这条直线在内的上半平面作为罗氏平面,其上的欧氏点当作罗氏几何的点,把以该直线上任一点为中心,任一长为半径的半圆周作为罗氏几何的直线,然后对如此规定的罗氏几何元素一一验证罗氏平行公理是成立的.如图4—3所示,过罗氏平面上任一罗氏直线l外的一点P,确实能够作出两条罗氏直线与l平行.因为欧氏直线a上的点不是罗氏几何系统的元素,因此两个半圆相交于直线a上某一点则应看作相交于无穷远点,从而在有穷范围内永不相交.这样以来,如果罗氏系统在今后的展开中出现了正、反两个互相矛盾的命题的话,则只要按上述规定之几何元素间的对应关系进行翻译,立即成为互相矛盾的两个欧氏几何定理.从而欧氏系统就矛盾了.因此,只要承认欧氏系统是无矛盾的,那么罗氏系统一定也是相容的.这就把罗氏系统的相容性证明经过上述庞卡莱模型化归为欧氏系统的相容性证明.这种把一个公理系统的相容性证明化归为另一个看上去比较可靠的公理系统的相容性证明,或者说依靠一个数学系统的无矛盾性来保证另一个数学系统的协调性叫做数学系统的相对相容性证明.对数学发展的影响由于相对相容性的出现,使人们对欧氏系统的相容性也忧心重重.而更糟的是,在罗氏系统的展开中人们又发现,罗氏几何空间的极限球面上也可构造欧氏模型,即欧氏几何的全部公理能在罗氏的极限球上实现,于是欧氏几何的相容性又可由罗氏几何的相容性来保证!这说明欧氏与罗氏的公理系统虽然不同,但却是互为相容的.人们当然不满足于两者互相之间的相对相容性证明,因为看上去较为合理的欧氏系统的无矛盾性竟要由看上去很不合理的罗氏系统来保证,这是难以令人满意的.于是人们开始寻求直接的相容性证明,本世纪初数学基础论就诞生了.由于在这一工作中所持的基本观点不同,在数学基础论的研究中形成了诸如逻辑主义派、直觉主义派和形式公理学派三大流派.这些流派虽然并未最后解决相容性证明问题,但在方法论上却各有贡献,她们的方法论、思想方法对于数学的研究与发展都具有重要的意义,有些还值得进一步分析、探讨、继承和发展.

归纳推理所谓归纳推理,就是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理。定义例如:在一个平面内,直角三角形内角和是180度;锐角三角形内角和是180度;钝角三角形内角和是180度;直角三角形,锐角三角形和钝角三角形是全部的三角形;因此,平面内的一切三角形内角和都是180度。这个例子从直角三角形,锐角三角形和钝角三角形内角和分别都是180度这些个别性知识,推出了"一切三角形内角和都是180度"这样的一般性结论,就属于归纳推理。传统上,根据前提所考察对象范围的不同,把归纳推理分为完全归纳推理和不完全归纳推理。完全归纳推理考察了某类事物的全部对象,不完全归纳推理则仅仅考察了某类事物的部分对象。并进一步根据前提是否揭示对象与其属性间的因果联系,把不完全归纳推理分为简单枚举归纳推理和科学归纳推理。现代归纳逻辑则主要研究概率推理和统计推理。归纳推理的前提是其结论的必要条件。其次,归纳推理的前提是真实的,但结论却未必真实,而可能为假。如根据某天有一只兔子撞到树上死了,推出每天都会有兔子撞到树上死掉,这一结论很可能为假,除非一些很特殊的情况发生,比如地理环境中发生了什么异常使得兔子必以撞树为快。我们能够用归纳强度来说明归纳推理中前提对结论的支持度。支持度小于50%的,则称该推理是归纳弱的;支持度小于100%但大于50%的,称该推理是归纳强的;归纳推理中只有完全归纳推理前提对结论的支持度达到100%,支持度达到100%的是必然性支持。归纳推理的数理逻辑通用演算形式为:s1⊆p+s2⊆p+s3⊆p+〈n〉(s⊆p)=∀×(s⊆p)。与演绎推理对比归纳推理和演绎推理既有区别、又有联系。区别1,思维进程不同。归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程。演绎推理不是从个别到一般的推理,但也不但仅是从一般到个别的推理:演绎推理能够从一般到一般,比如从"一切非正义战争都是不得人心的"推出"一切非正义战争都不是得人心的";能够从个别到个别,比如从"罗吉尔·培根不是那个建立新的归纳逻辑学说的培根"推出"那个建立新的归纳逻辑学说的培根不是罗吉尔·培根";能够从个别和一般到个别,比如从"这个物体不导电"和"所有的金属都导电"推出"这个物体不是金属";还能够从个别和一般到一般,比如从"你能够胜任这项工作"和"有志者事竟成或者你不能够胜任这项工作"推出"有志者事竟成"。在这里,应当特别注意的是,归纳推理中的完全归纳推理其思维进程既是从个别到一般,又是必然地得出。2,对前提真实性的要求不同。演绎推理不要求前提必须真实,归纳推理则要求前提必须真实。3,结论所断定的知识范围不同。演绎推理的结论没有超出前提所断定的知识范围。归纳推理除了完全归纳推理,结论都超出了前提所断定的知识范围。4,前提与结论间的联系程度不同。演绎推理的前提与结论间的联系是必然的,也就是说,前提真实,推理形式正确,结论就必然是真的。归纳推理除了完全归纳推理前提与结论间的联系是必然的外,前提和结论间的联系都是或然的,也就是说,前提真实,推理形式也正确,但不能必然推出真实的结论。联系1,演绎推理如果要以一般性知识为前提,(演绎推理未必都要以一般性知识为前提)则一般要依赖归纳推理来提供一般性知识。2,归纳推理离不开演绎推理。其一,为了提高归纳推理的可靠程度,需要运用已有的理论知识,对归纳推理的个别性前提进行分析,把握其中的因果性,必然性,这就要用到演绎推理。其二,归纳推理依靠演绎推理来验证自己的结论。例如,俄国化学家门捷列夫经过归纳发现元素周期律,指出,元素的性质随元素原子量的增加而呈周期性变化。后用演绎推理发现,原来测量的一些元素的原子量是错的。于是,她重新安排了它们在周期表中的位置,并预言了一些尚未发现的元素,指出周期表中应留出空白位置给未发现的新元素。逻辑史上曾出现两个相互对立的派别——全归纳派和全演绎派。全归纳派把归纳说成唯一科学的思维方法,否认演绎在认识中的作用。全演绎派把演绎说成是唯一科学的思维方法,否认归纳的意义。这两种观点都是片面的。正如恩格斯所说:"归纳和演绎,正如分析和综合一样,是必然相互联系着的。不应当牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。"收集方法归纳推理要以个别性知识为前提,为了获得个别性知识,就必须收集经验材料,收集经验材料的方法有观察,实验等。观察这里所说的"观察"是"科学的观察"的简称。一般来说,人们把外界的自然信息经过感官输入大脑,经过大脑的处理,形成对外界的感知,就是观察。然而,盲目的、被动的感受过程不是科学的观察。科学的观察是在一定的思想或理论指导下,在自然发生的条件下进行(不干预自然现象)但有目的的,主动的观察。科学的观察往往不是单纯地靠眼耳鼻舌身五官去感受自然界所给予的刺激,而要借助一定的科学仪器去考察,描述和确认某些自然现象的自然发生。观察要遵循客观性原则,对客观存在的现象应如实观察。如果观察失真,便不能得到真实可靠的结论。可是,说观察要遵循客观性原则,并不是说在观察时应当不带有任何理论观点。理论总是不同程度地渗透在观察之中。提出观察要客观,是要求用正确的理论来观察事物,以免产生主观主义。理论对观察的渗透,说明了主体在观察中的能动作用。氧的发现过程生动地体现了理论对观察的作用。1774年8月,英国科学家普利斯特里在用聚光透镜加热氧化汞时得到了氧气,她发现物质在这种气体里燃烧比在空气中更强烈,由于墨守陈旧的燃素说,她称这种气体为"脱去燃素的空气"。1774年,法国著名的化学家拉瓦锡正在研究磷、硫以及一些金属燃烧后质量会增加而空气减少的问题,大量的实验事实使她对燃素拉瓦锡理论发生了极大怀疑。正在这时,普利斯特里来到巴黎,把她的实验情况告诉了拉瓦锡,拉瓦锡马上意识到她的英国同事的实验的重要性。她马上重复了普利斯特里的实验,果真得到了一种支持燃烧的气体,她确定这种气体是一种新的元素。1775年4月拉瓦锡向法国巴黎科学院提出报告——金属在煅烧时与之相化合并增加其重量的物质的性质——公布了氧的发现。实际上,在普利斯特里发现氧气之前,瑞典化学家舍勒也曾独立地发现了氧气,但她把这种气体称为"火空气"。氧的发现过程正如恩格斯在《资本论》第二卷序言中所说的:"普利斯特里和舍勒已经找出了氧气,但不知道她们找到的是什么。她们不免为现有燃素范畴所束缚。这种原来能够推翻全部燃素观点并使化学发生革命的元素,没有在她们手中结下果实.……(拉瓦锡)仍不失为氧气的真正发现者,因为其它两位不过找出了氧气,但一点儿也不知道她们自己找出了什么。"当对象的性质使人们难以实际作用于对象(比如在天文学研究中)或者研究对象的特点要求避免外界干扰(如在许多心理学的研究中)时,最适用的收集经验材料的方法就是观察了。观察方法有一定局限性:(1)观察只能使我们看到现象,却看不到本质。现象是事物的外部联系和表面特征,是事物的外在表现。本质是事物的内部联系,是事物内部所包含的一系列必然性,规律性的综合。恩格斯说:"单凭观察所得到的经验,是决不能充分证明必然性的。"(2)观察有时无法区分真相与假象。比如,由于地球在运动,因此我们在地球上观察恒星的相互位置,仿佛发生了很大的变化,这在天文学上称为"视运动",可是视运动并不是天体的真实运动。实验实验是人们应用一定的科学仪器,使对象在自己的控制之下,按照自己的设计发生变化,并经过观察和思索这种变化来认识对象的方法。实验的特点是:(1)具有简化和纯化的特点。经过对影响某一对象的各种因素进行简化和纯化,突出主要因素,舍弃次要因素,排除与对象没有本质联系的因素的干扰,达到在比较单纯的状态下来认识对象。比如为研究某一植物在某一条件下对具有一定酸碱度的土壤的适应情况,在实验室中人为地控制大自然对植物生态的影响,只就酸碱度这一特定的因素进行考察.(2)具有强化条件的特点.经过实验,能够使对象处于一些特殊条件,极端状态下(如超高温,超高压,超真空和超强磁场等),使研究对象的特殊性质凸显出来,从而达到认识对象的特殊性质的目的.1956年杨振宁和李政道提出弱相互作用下宇称不守恒假说.为了检验这个假说,吴健雄用了钴-60作为实验材料进行实验.可是,在常温下钴-60本身的热运动和自旋方向杂乱无章,无法进行实验.于是吴健雄把钴-60冷却到0.01K,使钴核的热运动停止,实验便达到了预期效果.(3)具有可重复性.任何一个实验事实,应该能被重复实现,否则便不能成立,这是科学活动的一个规矩.例如,1974年10月初,丁肇中在美国经过实验证明了1/4粒子的存在,同年10月15日在西欧重复了这个实验,马上找到了1/4粒子,这就证明了丁肇中的实验是成功的.整理方法经过观察,实验等方法得到的经验材料,需要经过加工整理,才能形成科学的结论.整理经验材料的方法有比较,归类,分析与综合以及抽象与概括等.比较比较是确定对象共同点和差异点的方法.经过比较,既能够认识对象之间的相似,也能够了解对象之间的差异,从而为进一步的科学分类提供基础.运用比较方法,重要的是在表面上差异极大的对象中识"同",或在表面上相同或相似的对象中辨"异".正如黑格尔所说:"假如一个人能看出当前即显而易见的差别,譬如,能区别一支笔和一头骆驼,我们不会说这人有了不起的聪明.同样,另一方面,一个人能比较两个近似的东西,如橡树和槐树,或寺院与教堂,而知其相似,我们也不能说她有很高的比较能力.我们所要求的,是要能看出异中之同和同中之异."①在进行比较时必须注意以下两点:(1)要在同一关系下进行比较.也就是说,对象之间是可比的.如果拿不能相比的东西来勉强相比,就会犯"比附"的错误.比如,木之长是空间的长度,夜之长是时间的长度,二者不能比长短.(2)选择与制定精确的,稳定的比较标准.比如,在生物学中广泛使用生物标本,地质学中广泛使用矿石标本,用它们来证认不同品种的生物和矿石.这些标本就是比较的标准.现在研究陨石或登月采集的月岩物质,也是将它们同地球上的矿石标本比较.(3)要在对象的实质方面进行比较.例如比较两位大学生谁更优秀,必须就她们的思想品德,学习成绩,实践能力等实质方面进行比较,而不是就性别,籍贯,家庭贫富等方面进行比较.归类归类是根据对象的共同点和差异点,把对象按类区分开来的方法.经过归类,能够使杂乱无章的现象条理化,使大量的事实材料系统化.归类是在比较的基础上进行的.经过比较,找出事物间的相同点和差异点,然后把具有相同点的事实材料归为同一类,把具有差异点的事实材料分成不同的类.如全世界40万种左右植物,可把它们归为四大类(门):藻菌植物门,苔藓植物门,蕨类植物门和种子植物门.由门再往下分能够得出纲,目,科,属,种各级单位.归类与词项的划分是有区别的.(1)思维进程的方向不同.词项的划分是从较大的类,划分出较小的类.而归类则相反,它是从个体开始,上升到类,再上升到一般性更大的类.(2)作用不同.词项的划分是为了明确词项.归类则是把占有的材料系统化的方法.更为重要的是,由于正确的分类系统反映了事物的本质特征和内部规律性的联系,因而具有科学的预见性,能够指导人们寻找或认识新的具体事物.例如,以达尔文生物进化论为基础建立起来的生物自然分类系统,曾预言了许多当时尚未发现的过渡性生物.始祖鸟就是达尔文所预言并被人找到的一种.始祖鸟是介于爬虫类和鸟类之间的中间类型.它把这两类动物之间的空隙填补起来了,说明鸟类是由爬虫类演变而来的.分析与综合分析就是将事物"分解成简单要素".综合就是"组合,结合,凑合在一起".也就是说,将事物分解成组成部分,要素,研究清楚了再凑合起来,事物以新的形象展示出来.这就是采用了分析与综合的方法.如,分析一篇英文文章的结构,先是得到句子,单词,最后得到26个字母;反过来,综合是由字母组成单词,句子,再由句子组成文章,这些是文法所要研究的题材.再如,白色的光经过三棱镜,分解成红橙黄绿青蓝紫七色光;反过来,七色光又合成白色光.这就是光谱的分析与综合,由此能够解释彩虹的成因.分析和综合是两种不同的方法,它们在认识方向上是相反的.但它们又是密切结合,相辅相成的.一方面,分析是综合的基础;另一方面,分析也依赖于综合,没有一定的综合为指导,就无从对事物作深入分析.抽象与概括抽象是人们在研究活动中,应用思维能力,排除对象次要的,非本质的因素,抽出其主要的,本质的因素,从而达到认识对象本质的方法.概括是在思维中把对象本质的,规律性的认识,推广到所有同类的其它事物上去的方法.如发现"能导电"这一"金属"的共同本质后,可把这种共同的本质推广到全部金属上去,概括出全部金属都具有"能导电"的本质属性.完全归纳概念完全归纳推理是根据某类事物每一对象都具有某种属性,从而推出该类事物都具有该种属性的结论.例子例如:"已知欧洲有矿藏,亚洲有矿藏,非洲有矿藏,北美洲有矿藏,南美洲有矿藏,大洋洲有矿藏,南极洲有矿藏,而欧洲,亚洲,非洲,北美洲,南美洲,大洋洲,南极洲是地球上的全部大洲,因此,地球上所有大洲都有矿藏."其逻辑形式如下:S1是PS2是P……Sn是PS1,S2,…,Sn是S类的全部对象因此,所有S都是P完全归纳推理的特点是:在前提中考察了一类事物的全部对象,结论没有超出前提所断定的知识范围,因此,其前提和结论之间的联系是必然的.运用完全归纳推理要获得正确的结论,必须满足两条要求:(1)在前提中考察了一类事物的全部对象.(2)前提中对该类事物每一对象所作的断定都是真的.作用完全归纳推理有两个方面的作用:(1)认识作用.完全归纳推理根据某类事物每一对象都具有某种属性,推出该类事物都具有该种属性,使人们的认识从个别上升到了一般.比如,上面根据"地球上的大洲"这一类事物的每个对象都有"有矿藏"这一属性,得出"地球上所有大洲都有矿藏"的结论,就体现了完全归纳推理的认识作用.(2)论证作用.因为完全归纳推理的前提和结论之间的联系是必然的,因此常被用作强有力的论证方法.比如对于论题"两个特称前提的三段论推不出结论",能够这样论证:前提是II的三段论推不出结论,前提是OO的三段论推不出结论,前提是IO(OI)的三段论推不出结论,前提是II的三段论,前提是OO的三段论,前提是IO(OI)的三段论是两个特称前提的三段论的全部对象,因此,两个特称前提的三段论推不出结论.完全归纳推理一般适用于数量不多的事物.当所要考察的事物数量极多,甚至是无限的时候,完全归纳推理就不适用了,而需要运用另一种归纳推理形式,即不完全归纳推理.不完全法概念不完全归纳推理是根据某类事物部分对象都具有某种属性,从而推出该类事物都具有该种属性的结论.不完全归纳推理包括简单枚举归纳推理,科学归纳推理.简单枚举归纳推理在一类事物中,根据已观察到的部分对象都具有某种属性,而且没有遇到任何反例,从而推出该类事物都具有该种属性的结论,这就是简单枚举归纳推理.比如,被誉为"数学王冠上的明珠"的"哥德巴赫猜想"就是用了简单枚举归纳推理提出来的.200多年前,德国数学家哥德巴赫发现,一些奇数都分别等于三个素数之和.例如:17=3+3+1141=11+13+1777=7+17+53461=5+7+449哥德巴赫并没有把所有奇数都列举出来(事实上也不可能),只是从少数例子出发就提出了一个猜想:所有大于5的奇数都能够分解为三个素数之和.她把这个猜想告诉了数学家欧拉.欧拉肯定了她的猜想,并补充提出猜想:大于4的偶数都能够分解为两个素数之和.例如:10=5+514=7+718=7+11462=5+457前一个命题能够从这个命题得到证明,这两个命题后来合称为"哥德巴赫猜想".民间的许多谚语,如"瑞雪兆丰年","础润而雨,月晕而风","鸟低飞,披蓑衣"等,都是根据生活中多次重复的事例,用简单枚举归纳推理概括出来的.简单枚举归纳推理的逻辑形式如下:S1是PS2是P……Sn是PS1,S2,…,Sn是S类的部分对象,而且其中没有S不是P因此,所有S是(或不是)P简单枚举归纳推理的结论是或然的,因为其结论超出了前提所断定的知识范围.数学家华罗庚在《数学归纳法》一书中,对简单枚举归纳推理的或然性做了很好的说明:"从一个袋子里摸出来的第一个是红玻璃球,第二个是红玻璃球,甚至第三个,第四个,第五个都是红玻璃球时,我们马上就会猜想:'是不是袋子里所有的球都是红玻璃球'可是,当我们有一次摸出一个白玻璃球时,这个猜想失败了.这时,我们会出现另一个猜想:'是不是袋里的东西全都是玻璃球'当有一次摸出一个木球时,这个猜想又失败了.那时,我们又会出现第三个猜想:'是不是袋里的东西都是球'这个猜想对不对,还必须继续加以检验,要把袋里的东西全部摸出来,才能见个分晓."①要提高简单枚举归纳推理的可靠性,必须注意以下两条要求:(1)枚举的数量要足够多,考察的范围要足够广.(2)考察有无反例.一般把不注意以上两条要求因而样本过少,结论明显为假的简单枚举归纳推理称为"以偏赅全"或"轻率概括".鲁迅在《内山完造作序》里写到:"一个旅行者走进了下野的有钱的大官的书斋,看见有许多很贵的砚石,便说中国是'文雅的国度';一个观察者到上海来一下,买几种猥亵的书和图画,再去寻寻奇怪的观览物事,便说中国是'色情的国度'."在这篇文章中,鲁迅更进一步揭示了此类人因为枚举的数量不够多或考察的范围不够广,不注意考察有无反例,以致"以偏赅全"或"轻率概括"而最后必然要陷入的窘境:"倘到穷文人的家里或者寓里去,不但无所谓书斋,连砚石也不过用着两角钱一块的家伙.一看见这样的事,先前的结论就通不过去了,因此观察者也就有些窘."简单枚举归纳推理是归纳推理中最简单的一种方法.可是,尽管如此,其意义却不可忽视.(1)简单枚举归纳推理有助发现的作用.当还不能找到概括的充分根据,但已有相当的材料时,就要运用简单枚举归纳推理,作出初步概括,推出一个或然性结论,以作为进一步研究的起点.因而,形成假说时常见到简单枚举归纳推理.例如,在波义耳定律的发现过程中,简单枚举归纳推理就起了一定的作用.波义耳从自己所掌握的许多实验事实中,概括出"在一定条件下,气体体积和它所受到的压强成反比"这一定律.(2)简单枚举归纳推理也能够用作论证的方法,在论证过程中发挥一定的作用.比如,胡适晚年有这样一段谈话:"凡是大成功的人,都是有绝顶聪明而肯做笨功夫的人.不但中国如此,西方也如此.像孔子,她说'吾尝终日不食,终夜不寝,以思,无益,不如学也',这是孔子做学问的功夫.孟子就差了.汉代的郑康成的大成就,完全是做的笨功夫.宋朝的朱夫子,她是一个绝顶聪明的人,她十五六岁时就研究禅学,中年以后才改邪归正.她说的'宁详毋略,宁近毋远,宁下毋高,宁拙毋巧'十六个字,我时常写给人家的.她的《四书集注》,除了《大学》早成定本外,其余仍是随时修改的.现在的《四书集注》,不知是她生前已经印行的本子,还是她以后修改未定的本子.如陆象山,王阳明,也是第一等聪明的人.像顾亭林,少年时大气磅礴,中年时才做实学,做笨的功夫,你看她的成就!"在这里,胡适为了论证"凡是大成功的人,都是有绝顶聪明而肯做笨功夫的人"的观点,用的就是简单枚举归纳推理.中国数学家和语言学家周海中对梅森素数研究多年,她运用联系观察法和不完全归纳法,于1992年首先给出了梅森素数分布的精确表示式,从而揭示了梅森素数的重要规律,为人们探究这一素数提供了方便。后来这一科研成果被国际上称为”周氏猜测”。[1]

科学归纳推理科学归纳推理是根据某类事物中部分对象与某种属性间因果联系的分析,推出该类事物具有该种属性的推理.例如:金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀;因为金属受热后,分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致膨胀,而金,银,铜,铁都是金属;因此,所有金属受热后体积都膨胀.上例在前提中不但考察了一类事物的部分对象有某种属性,而且进一步指出了对象与属性之间的因果联系,由此推出结论.这就是科学归纳推理.科学归纳推理的形式如下:S1是PS2是P……Sn是PS1,S2,…,Sn是S类的部分对象,其中没有Si(1≤i≤n)不是P;而且科学研究表明,S和P之间有因果联系因此,所有S都是P科学归纳推理与简单枚举归纳推理相比,有共同点和不同点.它们的共同点是:都属于不完全归纳推理,前提中都只是考察了一类事物的部分对象,结论则都是对一类事物全体的断定,断定的知识范围超出前提.不同点是:(1)推理根据不同.简单枚举归纳推理仅仅根据已观察到的部分对象都具有某种属性,而且没有遇到任何反例.科学归纳推理则不是停留在对事物的经验的重复上,而是深入进行科学分析,在把握对象与属性之间因果联系的基础上作出结论.(2)前提数量对于两者的意义不同.对于简单枚举归纳推理来说,前提中考察的对象数量越多,范围越广,结论就越可靠.对于科学归纳推理来说,前提的数量不具有决定性的意义,只要充分认识对象与属性之间的因果联系,即使前提的数量不多,甚至只有一两个典型事例,也能得到可靠结论.正如恩格斯所说,十万部蒸汽机并不比一部蒸汽机更能说明热能转化为机械能.佛教《百喻经》中有一则故事说到,从前有一位富翁想吃芒果,打发她的仆人到果园去买,并告诉她:"要甜的,好吃的,你才买."仆人拿好钱就去了.到了果园,园主说:"我这里树上的芒果个个都是甜的,你尝一个看."仆人说:"我尝一个怎能知道全体呢我应当个个都尝过,尝一个买一个,这样最可靠."仆人于是自己动手摘芒果,摘一个尝一口,甜的就都买回去.带回家去,富翁见了,觉得非常恶心,一齐都扔了.这则故事非常有讽刺意味地说明了,简单枚举归纳推理在有些情况下是又笨又懒的办法,其笨在重复,其懒在不思考.当我们观察到一些S具有属性P后,应当开始思考,为什么这些S会有属性P呢也就是,去弄清楚S和P究竟有没有因果联系.经过把握对象与属性之间的因果联系,我们就能够尝数个芒果而知一棵树上全部芒果是甜还不是不甜,比如,我们能够想到,芒果的甜与不甜和园中土壤,日照等有因果联系,因而同一座园起码同一棵树的芒果其甜是差不太多的.(3)结论的可靠性不同.虽然二者的前提和结论之间的联系是或然的,归纳强度不必然等于1.但科学归纳推理考察了对象与属性之间的因果联系,因而,科学归纳推理的归纳强度比简单枚举归纳推理的归纳强度大,也就是说,科学归纳推理与简单枚举归纳推理相比,结论的可靠程度大.科学归纳推理倡导一种面对知识和结论不轻信而加以思考的习惯.这种习惯在资讯发达的时代尤显重要.想想,我们的媒体经常给我们传播一些多么自相矛盾的"科学知识",这一点就不难明白了.比如,媒体有时候说,饭后百步走好;有时候又说,饭后百步走不好.再如,有时候说,隔夜茶不能喝,喝了有害健康;有时候又说,研究表明,隔夜茶能够喝,与喝非隔夜茶一样.诸如此类,叫人简直不知所措.而科学归纳推理由于其主要特点是考察对象与属性之间的因果联系,因而有助于引导人们去探求事物的本质,发现事物的规律,从而比较可靠地把感性认识提升到理性认识.概率推理M·克莱因在《西方文化中的数学》中写到:"不用说关于我们未来的事情,甚至从现在起的一小时后,也均无任何肯定的东西存在.一分钟后,我们脚下的地面可能就会裂开.可是,宣称这种可能性吓唬不了我们,因为我们知道,出现这种情况的概率极小.换句话说,正是一个事件是否发生的概率,决定了我们对该事件的态度和行动."①那种在某种条件下可能出现,也可能不出现的现象,我们称之为随机事件或偶然事件,如从一副桥牌中抽出一张红桃K.事实上,当我们观察了大量的同类随机事件后,就会发现其中存在着一定的规律性.概率就是对大量随机事件所呈现的规律的数量上的刻画,一般见P(A)表示.运用概率推理,我们能够获知某事件发生的可能性有多大,或者说某事件发生的机会有多大.在这个意义上,能够说概率推理即关于机会的推断.概率值在日常生活中,我们仅仅满足于估计一个事件的概率是高还是低而已.可是,这种估计过于宽泛,不能满足诸如在工业,经济,保险,医疗,社会学,心理学等等许多问题上的需要.因为在上述情形中,必须知道准确的概率值.要达到这个目的,就要求助于数学.依靠数学计算出来的概率值,才能够可靠地指引我们的行动.一般地,计算概率值的定义是:如果有n种等可能性,而有利于某事件发生的情形是m,则该事件发生的概率是m/n,不发生的概率是(n-m)/n.在这个定义下,如果事件是不可能的,则事件的概率为0/n,即为0;如果事件是完全确定的,则概率是n/n,即为1.因此,概率值在从0到1的范围内变化,即从不可能性到确定性.所谓等可能性,就是说出现的可能性相同.比如,一个骰子有6个面,若在骰子的形状上或在扔骰子的方式中,没有任何因素有利于某一面的出现,则骰子6面出现的可能性相同,也就是骰子具有6种等可能性.按照计算概率值的这个定义,从52张普通的未擦肥皂的一副扑克牌中,选取一张牌"A"的概率就是4/52,即1/13.因为这里有52种等可能性,其中有4种是有利的.可是,如果全部可能性不是等可能的,则这个计算概率值的定义就不适用.比如,一个人穿过街头只有两种可能性:或者安全穿过,或者没有安全穿过.可是,不能由此断定说一个人安全穿过街头的概率是1/2,因为,"安全穿过"和"没有安全穿过"这两种可能性并不是等可能的.应当注意的是,概率告诉我们的是大量选取中所发生的情况.比如,从52张一副的扑克牌中选取"A"的概率是1/13,这并不意味着,如果一个人在这副扑克牌中取了13次,就一定会选中一张"A".她可能取了30次或40次,也没有得到一张"A".不过,她取的次数越多,则取得A的次数与取牌总次数之比将会趋近于1/13.另外,这也并不意味着,如果一个人取了一张"A",比如说正好是第一次取得的,下一次取出一张"A"的概率就必定小于1/13.概率依然将是相同的,即为1/13,即使3张"A"被连续取出来时也是如此.因为,一副牌既没有记忆也没有意识,因此已经发生的事情不会影响未来.法律含义是指从特殊到一般的推理,当法官处理案件时,手边没有合适的法律规则和原则供适用,而刚巧从一系列早期的判例中能够总结出可适用的规则和原则,那么她就按先例处理了本案。

演绎推理所谓演绎推理,就是从一般性的前提出发,经过推导即”演绎”,得出具体陈述或个别结论的过程。演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。定义所谓演绎推理,就是从一般性的前提出发,经过推导即”演绎”,得出具体陈述或个别结论的过程。关于演绎推理,还存在以下几种定义:①演绎推理是从一般到特殊的推理;②它是前提蕴涵结论的推理;③它是前提和结论之间具有必然联系的推理。④演绎推理就是前提与结论之间具有充分条件或充分必要条件联系的必然性推理。演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。这是因为演绎推理保证推理有效的根据并不在于它的内容,而在于它的形式。演绎推理的最典型、最重要的应用,一般存在于逻辑和数学证明中。发展亚里士多德(Aristotle384—322BC)是古代知识的集大成者。在现代欧洲的学术上的文艺复兴以前,虽然也有一些人在促进我们对自然界的特殊部分的认识方面取得可观的成绩,可是,在她死后的数百年间从来没有一个人像她那样对知识有过那样系统的考察和全面的把握,因此,她在科学史上占有很高的地位.是主张进行有组织的研究演绎推理的第一人。作为自然科学史上第一个思想体系的光辉的例子是欧几里德(Euclid,325BC—265BC)几何学。古希腊的数学家欧几里德是以她的《几何原本》而著称于世的。欧几里德的巨大历史功勋不但在于建立了一种几何学,而且在于首创了一种科研方法。这方法所授益于后人的,甚至超过了几何学本身。欧几里德是第一个将亚里士多德用三段论形式表述的演绎法用于构建实际知识体系的人,欧几里德的几何学正是一门严密的演绎体系,它从为数不多的公理出发推导出众多的定理,再用这些定理去解决实际问题。比起欧几里德几何学中的几何知识而言,它所蕴含的方法论意义更重大。事实上,欧几里德本人对它的几何学的实际应用并不关心,她关心的是她的几何体系内在逻辑的严密性。欧几里德的几何学是人类知识史上的一座丰碑,它为人类知识的整理、系统阐述提供了一种模式。从此以后,将人类的知识整理为从基本概念、公理或定律出发的严密的演绎体系成为人类的梦想。斯宾诺莎(BenedictdeSpinoza,1632-1677)的伦理学就是按这种模式阐述的,牛顿(IsaacNewton1642-1727)的《自然哲学的数学原理》同样如此。其实,她的这部巨著的主要内容都是前人经验的积累,欧氏的贡献在于她从公理和公设出发,用演绎法把几何学的知识贯穿起来,揭示了一个知识系统的整体结构。她破天荒地开辟另一条大路,即建立了一个演绎法的思想体系。直到今天,她所创立的这种演绎系统和公理化方法,依然是科学工作者不可须臾离开的东西。后来的科学巨人、英国物理学家、经典电磁理论的奠基人麦克斯韦(JamesClerkMaxwell,1831-1879)、牛顿(IsaacNewton1642-1727)、爱因斯坦(AlbertEinstein1879--1955)等,在创立自己的科学体系时,无不是对这种方法的成功运用。西方欧几里德几何方法,由公理到定理再到证明;笛卡尔(RénéDescartes1596-1650)的演绎推理成为西方近代科学发展的重要推理形式,牛顿力学就是例子。牛顿虽然声明过”我不需要假设”,但实际上,她依然需要假设。不用假设,她就无法得到”万有引力”这样的普遍命题和普遍规律。麦克斯韦则在得到maxwekk方程同时应用了三种方法,她在1865年写了三篇文章:第一篇用归纳法,第二篇用类比法,第三篇用演绎法,推出电磁波存在,并预言了光是电磁波。再例如,古希腊的原子概念、原子论,”它的价值不但在于提出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论