版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面几何之直线图形闯关目标
等积变形
一半模型
鸟头模型
六大模型
蝴蝶模型
燕尾模型
相似模型
赛前热身
平面几何是小升初考试的必考内容,而且常常以大题的形式出现,重点中学选拔考试中几何题目分值较高,并且难度有逐步增加的趋势,虽然几何题形式多样,但通过总结归纳,掌握基本的几何模型,有助于解决更多几何新题,难题。
1ppt课件平面几何之直线图形1ppt课件等积变形等积变形这里的积指的是面积,因为任何直线型图形都可分解成若干个三角形,所以三角形是最基本图形,等积变形里主要研究的是三角形面积变换。三角形面积=底×高÷2
决定三角形面积的大小,取决于底和高这两个量。
等底等高:如果两个三角形等底等高,则这两个三角形面积相同(如图1);(典型的夹在一组平行线间的,两个三角形若同底,则面积相同)
同底看高:如果两个三角形等底,但高不等,则面积比等于高的比(如图2);
同高看底:如果两个三角形等高,但底不等,则面积比等于底的比(如图3)。2ppt课件等积变形2ppt课件一半模型
阴影图形占整个图形面积的一半。一般在平行四边形中常见一半模型,任取一点与其四个顶点连线,所构成的三角形占平行四边形面积的一半。当然在梯形中也常见一半模型。最下面三个图,边上的点都为中点。3ppt课件一半模型3ppt课件鸟头模型(共角模型)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形常见图形,如下图
如上图中有
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。4ppt课件鸟头模型(共角模型)4ppt课件蝴蝶模型
蝴蝶模型为我们提供了解决不规则四边形的面积问题的一个途径,通过构造模型,一方面可以使不规则四边形的面积与四边形内的三角形面积之间建立了相关的联系,得到与面积对应的对角线的比例关系。任意四边形中的蝴蝶模型:
梯形中蝴蝶模型5ppt课件蝴蝶模型5ppt课件燕尾模型
从三角形一个顶点向对边上任意一点画线段,在线段上任取一点组成的图形面积也会有如下关系:6ppt课件燕尾模型6ppt课件金字塔、沙漏模型所谓的金字塔、沙漏模型,就是指形状相同,大小不同的两个三角形,一切对应线段的长度成比例的模型,如图所示:7ppt课件金字塔、沙漏模型7ppt课件勾股定理我国最早发现在直角三角形中两条直角边的平方和等于斜边的平方,把这一特性叫做勾股定理或勾股弦定理,外国称为毕达哥拉斯定理。如右图在直角三角形8ppt课件勾股定理8ppt课件例题1(2008年第一届“陈省身杯”六年级2试)如图,BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK为多少?9ppt课件例题19ppt课件例题2如图1,并排放有三个正方形,其中正方形GBEF的边长为10厘米,连接GK,交EF于O,连接DE,交BG于Q,连接DG,求阴影部分的面积。10ppt课件例题210ppt课件例题3如图1,梯形ABCD,下底BC上有一点E,梯形空白处的面积比阴影△ADE得到面积多200平方厘米,又知梯形下底BC比上底AD长20厘米。求这个梯形的高是多少?11ppt课件例题311ppt课件例题4将长16厘米,宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点O与分点及顶点连接,如图,则阴影部分的面积是
平方厘米。12ppt课件例题412ppt课件例题5如图,已知三角形ABC面积为1,延长AB至D,使BD=AB,延长BC至E,使CE=2BC,延长CA至F,使AF=3AC,求三角形DEF的面积。13ppt课件例题513ppt课件例题6如图1,正六边形的面积为6,那么阴影部分的面积是多少?14ppt课件例题614ppt课件例题7如图1,△ABC中,BD=2DA,CE=2EB,AF=2FC,那么△ABC的面积是阴影三角形面积的
倍。15ppt课件例题715ppt课件例题8正六边形分别是正六边形各边的中点,那么图中阴影六边形的面积是
平方厘米。16ppt课件例题816ppt课件例题9如图1,对角线BD将长方形ABCD分割为两个三角形,AE和CF分别是两个三角形上的高,长度都等于6cm,EF的长度为5cm,求长方形ABCD的面积。17ppt课件例题917ppt课件
平面几何之直线图形闯关目标
等积变形
一半模型
鸟头模型
六大模型
蝴蝶模型
燕尾模型
相似模型
赛前热身
平面几何是小升初考试的必考内容,而且常常以大题的形式出现,重点中学选拔考试中几何题目分值较高,并且难度有逐步增加的趋势,虽然几何题形式多样,但通过总结归纳,掌握基本的几何模型,有助于解决更多几何新题,难题。
18ppt课件平面几何之直线图形1ppt课件等积变形等积变形这里的积指的是面积,因为任何直线型图形都可分解成若干个三角形,所以三角形是最基本图形,等积变形里主要研究的是三角形面积变换。三角形面积=底×高÷2
决定三角形面积的大小,取决于底和高这两个量。
等底等高:如果两个三角形等底等高,则这两个三角形面积相同(如图1);(典型的夹在一组平行线间的,两个三角形若同底,则面积相同)
同底看高:如果两个三角形等底,但高不等,则面积比等于高的比(如图2);
同高看底:如果两个三角形等高,但底不等,则面积比等于底的比(如图3)。19ppt课件等积变形2ppt课件一半模型
阴影图形占整个图形面积的一半。一般在平行四边形中常见一半模型,任取一点与其四个顶点连线,所构成的三角形占平行四边形面积的一半。当然在梯形中也常见一半模型。最下面三个图,边上的点都为中点。20ppt课件一半模型3ppt课件鸟头模型(共角模型)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形常见图形,如下图
如上图中有
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。21ppt课件鸟头模型(共角模型)4ppt课件蝴蝶模型
蝴蝶模型为我们提供了解决不规则四边形的面积问题的一个途径,通过构造模型,一方面可以使不规则四边形的面积与四边形内的三角形面积之间建立了相关的联系,得到与面积对应的对角线的比例关系。任意四边形中的蝴蝶模型:
梯形中蝴蝶模型22ppt课件蝴蝶模型5ppt课件燕尾模型
从三角形一个顶点向对边上任意一点画线段,在线段上任取一点组成的图形面积也会有如下关系:23ppt课件燕尾模型6ppt课件金字塔、沙漏模型所谓的金字塔、沙漏模型,就是指形状相同,大小不同的两个三角形,一切对应线段的长度成比例的模型,如图所示:24ppt课件金字塔、沙漏模型7ppt课件勾股定理我国最早发现在直角三角形中两条直角边的平方和等于斜边的平方,把这一特性叫做勾股定理或勾股弦定理,外国称为毕达哥拉斯定理。如右图在直角三角形25ppt课件勾股定理8ppt课件例题1(2008年第一届“陈省身杯”六年级2试)如图,BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK为多少?26ppt课件例题19ppt课件例题2如图1,并排放有三个正方形,其中正方形GBEF的边长为10厘米,连接GK,交EF于O,连接DE,交BG于Q,连接DG,求阴影部分的面积。27ppt课件例题210ppt课件例题3如图1,梯形ABCD,下底BC上有一点E,梯形空白处的面积比阴影△ADE得到面积多200平方厘米,又知梯形下底BC比上底AD长20厘米。求这个梯形的高是多少?28ppt课件例题311ppt课件例题4将长16厘米,宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点O与分点及顶点连接,如图,则阴影部分的面积是
平方厘米。29ppt课件例题412ppt课件例题5如图,已知三角形ABC面积为1,延长AB至D,使BD=AB,延长BC至E,使CE=2BC,延长CA至F,使AF=3AC,求三角形DEF的面积。30ppt课件例题513ppt课件例题6如图1,正六边形的面积为6,那么阴影部分的面积是多少?31ppt课件例题614ppt课件例题7如图1,△ABC中,BD=2DA,CE=2EB,AF=2FC,那么△ABC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60335-2-15:2024 CMV EN Household and similar electrical appliances - Safety - Part 2-15: Particular requirements for appliances for heating liquids
- 淮阴师范学院《田径》2022-2023学年第一学期期末试卷
- 淮阴师范学院《世界现代史》2022-2023学年第一学期期末试卷
- 淮阴师范学院《热力学与统计物理学》2023-2024学年第一学期期末试卷
- 淮阴师范学院《民法》2021-2022学年第一学期期末试卷
- 淮阴师范学院《中国现代政治制度》2021-2022学年第一学期期末试卷
- 淮阴师范学院《管理信息系统》2022-2023学年第一学期期末试卷
- 淮阴工学院《语言程序设计》2021-2022学年期末试卷
- 淮阴工学院《物流工程学1》2022-2023学年第一学期期末试卷
- DB6110-T 63-2024《加油站诚信计量管理规范》
- CJJ207-2013 城镇供水管网运行、维护及安全技术规程
- 六年级道德与法治期末测试卷加答案(易错题)
- 三位数除以两位数300题-整除-有标准答案
- 办公室装修工程施工方案讲义
- 医院护理人文关怀实践规范专家共识
- 中国农业银行贷后管理办法
- MOOC 陶瓷装饰·彩绘-无锡工艺职业技术学院 中国大学慕课答案
- 小学科学苏教版四年级上册全册教案(2023秋新课标版)
- 信访纠纷化解预案
- 硅晶圆缺陷的化学性质与影响
- 《布的基本知识》课件
评论
0/150
提交评论