




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知中,,,点M是线段BC(含端点)上的一点,且,则的取值范围是()A. B.C. D.2.已知,则的最小值为().A.9 B.C.5 D.3.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x4.若<α<π,化简的结果是()A. B.C. D.5.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°6.为了得到函数的图象,只需将余弦曲线上所有的点A.向右平移个单位 B.向左平移个单位C向右平移个单位 D.向左平移个单位7.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数8.对于函数,若存在,使,则称点是曲线“优美点”.已知,则曲线的“优美点”个数为A.1 B.2C.4 D.69.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.10.已知一几何体的三视图,则它的体积为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____12.由直线上的任意一个点向圆引切线,则切线长的最小值为________.13.函数y=的定义域是______.14.______15.幂函数的图像经过点,则的值为____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)根据函数单调性的定义,证明在区间上单调递减,在区间上单调递增;(2)令,若对,,都有成立,求实数取值范围17.已知函数的部分图象如图所示()求函数的解析式()求函数在区间上的最大值和最小值18.(1)设,求与的夹角;(2)设且与的夹角为,求的值.19.如图,已知圆M过点P(10,4),且与直线4x+3y-20=0相切于点A(2,4)(1)求圆M的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且,求直线l的方程;20.求下列函数的值域(1)(2)21.已知函数,.(1)求函数的值域;(2)若存在实数,使得在上有解,求实数的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】如图所示,建立直角坐标系,则,,,.利用向量的坐标运算可得.再利用数量积运算,可得.利用数量积性质可得,可得.再利用,,可得,即可得出【详解】如图所示,建立直角坐标系则,,,,,及四边形为矩形,,,.即点在直线上,,,,,,即(当且仅当或时取等号),综上可得:故选:【点睛】本题考查了向量的坐标运算、数量积运算及其性质、不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题2、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.3、D【解析】利用三角函数的周期性求解.【详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D4、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力5、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A6、C【解析】利用函数的图象变换规律,得出结论【详解】把余弦曲线上所有的点向右平行移动个单位长度,可得函数的图象,故选C【点睛】本题主要考查函数的图象变换规律,属于基础题7、D【解析】全称命题是假命题,则其否定一定是真命题,判断选项.【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D8、C【解析】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,求出的函数关于原点对称的函数解析式,与联立,解方程可得交点个数【详解】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,由可得,关于原点对称的函数,,联立和,解得或,则存在点和为“优美点”,曲线的“优美点”个数为4,故选C【点睛】本题考查新定义的理解和运用,考查转化思想和方程思想,属于难题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.9、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且10、C【解析】所求体积,故选C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.12、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.13、【解析】要使函数有意义,需满足,函数定义域为考点:函数定义域14、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.15、2【解析】因为幂函数,因此可知f()=2三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析(2)【解析】(1)由单调性定义证明;(2)换元,设,,由(1)求得的范围,然后由二次函数性质求得最大值和最小值,由最大值减去最小值不大于可得的范围【小问1详解】证明:设,,且,则,当时,∴,,∴,∴,即,∴函数在上单调递减当时,∴,,∴,∴,即,∴函数在上单调递增综上,函数在上单调递减,在上单调递增【小问2详解】解:由题意知,令,,由(1)可知函数在上单调递减,在上单调递增,∴,∵函数的对称轴方程为,∴函数在上单调递减,当时,取得最大值,,当时,取得最小值,,所以,,又∵对,,都有恒成立,∴,即,解得,又∵,∴k的取值范围是17、();(),【解析】(1)由图可知,,得,所以;(2)当时,,利用原始图象,可知,试题解析:()由图可知,∴,∴,,∵,∴∵,∴∴()当时,当,即时,当时,时,18、(1);(2)61.【解析】(1)由已知中12,9,,代入平面向量的夹角公式,即可求出θ的余弦值,结合0°≤θ≤180°,即可得到答案(2)利用数量积运算法则即可得出;【详解】(1)∵12,9,,∴cosθ又∵0°≤θ≤180°则θ=135°(2)∵,,且与夹角为120°,∴6∴42﹣(﹣6)﹣3×32=61【点睛】本题考查了向量的数量积运算法则及其性质、夹角公式,属于基础题19、(1)(2)2x-y+5=0或2x-y-15=0.【解析】(1)由题意得到圆心M(6,7),半径,进而得到圆的方程;(2)直线l∥OA,所以直线l的斜率为,根据点线距和垂径定理得到解得m=5或m=-15,进而得到方程.解析:(1)过点A(2,4)且与直线4x+3y-20=0垂直的直线方程为3x-4y+10=0①AP的垂直平分线方程为x=6②由①②联立得圆心M(6,7),半径圆M的方程为(2)因为直线l∥OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0则圆心M到直线l的距离因为而所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.20、(1)(2)【解析】(1)由,可得,从而得出值域;(2)令将原函数转化为关于的二次函数,再求值域即可.【详解】(1)值域为(2)设当时y取最小值当时y取最大值所以其值域为【点睛】本题主要考查的是三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同履行中的担保方责任与义务
- 户用光伏系统销售合同5篇
- 宿舍楼改造工程合同
- 重点实验室建设可行性研究报告
- 子宫颈腺瘤样纤维瘤的新型诊断技术-全面剖析
- 交通大数据应用分析-全面剖析
- 图神经网络泛化能力-全面剖析
- 教育公平与区域发展-全面剖析
- 基于三焦辨证的中医治疗方案研究-全面剖析
- 云计算安全架构优化研究-全面剖析
- 军人抚恤优待条例培训2024
- 16J914-1 公用建筑卫生间
- 人教版高中美术 《传承与创新-中国近现代美术》课件
- 年处理量为2万吨丙烯-丙烷分离过程精馏塔设计
- 兵团精神讲座-课件
- 生命质量测定表(FACT-G)
- 中医基础理论·绪论课件
- 新湘教(湖南美术)版小学美术六年级下册全册PPT课件(精心整理汇编)
- 小班语言课《水果歌》PPT
- Opera、绿云、西软、中软酒店管理系统对比分析
- 超市经营业务管理规范标准
评论
0/150
提交评论