![山东省阳谷县二中2022年数学高一上期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view/15fc60f68783aa0e80feea3c49ae1e99/15fc60f68783aa0e80feea3c49ae1e991.gif)
![山东省阳谷县二中2022年数学高一上期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view/15fc60f68783aa0e80feea3c49ae1e99/15fc60f68783aa0e80feea3c49ae1e992.gif)
![山东省阳谷县二中2022年数学高一上期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view/15fc60f68783aa0e80feea3c49ae1e99/15fc60f68783aa0e80feea3c49ae1e993.gif)
![山东省阳谷县二中2022年数学高一上期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view/15fc60f68783aa0e80feea3c49ae1e99/15fc60f68783aa0e80feea3c49ae1e994.gif)
![山东省阳谷县二中2022年数学高一上期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view/15fc60f68783aa0e80feea3c49ae1e99/15fc60f68783aa0e80feea3c49ae1e995.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的单调递减区间是()A.() B.()C.() D.()2.下列选项正确的是()A. B.C. D.3.已知方程的两根为与,则()A.1 B.2C.4 D.64.下列各式中成立的是A. B.C. D.5.将函数的图像先向右平移个单位,再把所得函数图像横坐标变为原来的,纵坐标不变,得到函数的图像,若函数在上没有零点,则的取值范围是()A. B.C. D.6.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.7.设函数与的图像的交点为,则所在的区间是()A. B.C. D.8.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行9.下列哪组中的两个函数是同一函数()A与 B.与C.与 D.与10.已知实数,,且,则的最小值为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________12.已知扇形的弧长为,半径为1,则扇形的面积为___________.13.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________14.设函数,若实数满足,且,则的取值范围是_______________________15.幂函数的图像在第___________象限.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.17.化简或计算下列各式.(1);(2)18.已知函数(1)求的值域;(2)当时,关于的不等式有解,求实数的取值范围19.已知函数.(1)判断函数在上的单调性,并用定义证明;(2)记函数,证明:函数在上有唯一零点.20.已知函数fx=ax+b⋅a-x((1)判断函数fx(2)判断函数fx在0,+(3)若fm-3不大于b⋅f2,直接写出实数条件①:a>1,b=1;条件②:0<a<1,b=-1.注:如果选择条件①和条件②分别解答,按第一个解答计分.21.已知.(1)求的值;(2)求的值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据余弦函数单调性,解得到答案.【详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.2、A【解析】根据指数函数的性质一一判断可得;【详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A3、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D4、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.5、C【解析】先由图象的变换求出的解析式,再由定义域求出的范围,再利用正弦函数的图象和性质,求得的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,由,则,若函数在上没有零点,结合正弦函数的图象观察则∴,,解得,又,解得,当时,解得,当时,,可得,.故选:C【点睛】本题考查正弦型的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式求解,属于较难题.第II卷6、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.7、B【解析】根据零点所在区间的端点值的乘积小于零可得答案.【详解】函数与的图象的交点为,可得设,则是的零点,由,,∴,∴所在的区间是(1,2).故选:B.8、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.9、D【解析】根据同一函数的概念,逐项判断,即可得出结果.【详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.10、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.12、##【解析】利用扇形面积公式进行计算.【详解】即,,由扇形面积公式得:.故答案为:13、3【解析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.14、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:15、【解析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.17、(1)(2)【解析】(1)根据诱导公式化简整理即可得答案;(2)根据二倍角公式和同角三角函数关系化简即可得答案.【小问1详解】解:【小问2详解】解:18、(1)(2)【解析】(1)由.令,换元后再配方可得答案;(2)由得,令,转化为时有解的问题可得答案【小问1详解】,令,则,所以的值域为【小问2详解】,即,令,则,即在上有解,当时,m无解;当时,可得,因为,当且仅当时,等号成立,所以.综上,实数m的取值范围为19、(1)在上单调递增,证明见解析;(2)证明见解析.【解析】(1)根据题意,结合作差法,即可求证;(2)根据题意,结合单调性与零点存在性定理,即可求证.【小问1详解】函数在上单调递增.证明:任取,则,因为,所以,所以,即,因此,故函数在上单调递增.【小问2详解】证明:因为,,所以由函数零点存在定理可知,函数在上有零点,因为和都在上单调递增,所以函数在上单调递增,故函数在上有唯一零点.20、(1)答案见解析(2)答案见解析(3)答案见解析【解析】(1)定义域均为R,代入f-x化简可得出与fx的关系,从而判断奇偶性;(2)利用定义任取x1,x2∈0,+∞,且x1【小问1详解】解:选择条件①:a>1,函数fxfx的定义域为R,对任意x∈R,则-x∈R因为f-x所以函数fx是偶函数选择条件②:0<a<1,函数fxfx的定义域为R,对任意x∈R,则-x∈R因为f-x所以函数fx是奇函数【小问2详解】选择条件①:a>1,fx在0,任取x1,x2∈因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京邮电大学嵌入式操作系统的实验报告
- 温控仪表项目效益评估报告
- 收养小孩入户申请书
- 金融科技领域敏感数据存储防护
- 2021人教版四年级下册数学第四单元小数的意义和性质测试卷(含答案)
- 线上教育峰会赞助合同(2篇)
- 充电桩 申请书
- 现代办公环境下老旧小区物业管理的优化策略
- 用高质量移通网维护人们的安全研究
- 医学高级职称正高《小儿外科学》(题库)考前点题卷一
- 排水沟施工合同电子版(精选5篇)
- 清新典雅文艺教师公开课说课PPT课件模板
- 大气商务企业培训之团队合作的重要性PPT模板
- 2022年四川省成都市成华区七年级下学期期末语文试卷
- 石油化工、煤化工、天然气化工优劣势分析
- 10kV配网工程变配电(台架变、箱变、电缆分接箱)的安装设计施工精细化标准
- Q∕GDW 12118.3-2021 人工智能平台架构及技术要求 第3部分:样本库格式
- 广东省义务教育阶段学生转学转出申请表(样本)
- 毕业论文牛仔布染色工艺和质量控制
- 机耕路工程施工方案与技术措施
- 如何成为一个优秀的生产经理
评论
0/150
提交评论