版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)2.要得到函数的图象,只需的图象A.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的倍(横坐标不变)C.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)3.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴4.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.5.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.6.一条侧棱垂直于底面的三棱锥P﹣ABC的三视图不可能是()A.直角三角形B.等边三角形C.菱形D.顶角是90°的等腰三角形7.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要8.下列函数中,在其定义域内单调递减的是()A. B.C. D.9.边长为的正四面体的表面积是A. B.C. D.10.已知,则=()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.12.已知直线:,直线:,若,则__________13.在单位圆中,已知角的终边与单位圆的交点为,则______14.已知函数,则满足的的取值范围是___________.15.制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知全集,若集合,.(1)若,求,;(2)若,求实数的取值范围.17.已知函数f(x)(1)求f(f(﹣1));(2)画出函数的图象并求出函数f(x)在区间[0,4)上的值域18.(1)计算:lg25+lg2•lg50+lg22(2)已知=3,求的值19.已知函数的定义域为R,其图像关于原点对称,且当时,(1)请补全函数的图像,并由图像写出函数在R上的单调递减区间;(2)若,,求的值20.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:00200(1)请将上表数据补充完整;函数解析式为=(直接写出结果即可);(2)求函数的单调递增区间;(3)求函数在区间上的最大值和最小值21.已知函数.(1)求的值;(2)若函数在区间是单调递增函数,求实数的取值范围;(3)若关于的方程在区间内有两个实数根,记,求实数的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.2、D【解析】先将函数的解析式化为,再利用三角函数图象的变换规律得出正确选项.【详解】,因此,将函数的图象向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变),可得到函数的图象,故选D.【点睛】本题考查三角函数的图象变换,处理这类问题的要注意以下两个问题:(1)左右平移指的是在自变量上变化了多少;(2)变换时两个函数的名称要保持一致.3、D【解析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D4、D【解析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D5、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题6、C【解析】直接利用空间图形和三视图之间的转换的应用求出结果【详解】由于三棱锥P﹣ABC的一条侧棱垂直于底面,所以无论怎样摆放,该三视图都为三角形,不可能为菱形故选:C【点睛】本题考查三视图和几何体之间的转换,主要考查学生的空间想象能力,属于基础题7、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A8、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B9、D【解析】∵边长为a的正四面体的表面为4个边长为a正三角形,∴表面积为:4×a=a2,故选D10、B【解析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【详解】解:解得故选:【点睛】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.12、1【解析】根据两直线垂直时,系数间满足的关系列方程即可求解.【详解】由题意可得:,解得:故答案为:【点睛】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.13、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:14、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.15、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),;(2).【解析】(1)求出集合,直接进行补集和并集运算即可求解;(2)由题意可得:,列出满足的不等关系即可求解.【详解】(1)(2),17、(1)(2)图像见解析;值域为[1,16)【解析】(1)先求出的值,然后再求的值.(2)在同一坐标系中分别作出函数的图像,在根据各自的定义域选取相应的图像,然后可根据函数图像得出函数在[0,4)上的值域.【详解】(1)∵f(﹣1)=3,f(3)=9,∴f(f(﹣1))=f(3)=9(2)图象如下:∵f(0)=2,f(4)=16,f(1)=1,根据数图像,可得函数在区间[0,4)上值域为[1,16)【点睛】本题考查求分段函数的函数值和作出分段函数的图像,并根据函数图像求函数的值域,属于基础题.18、(1)2;(2)9.【解析】(1)利用对数的性质及运算法则直接求解(2)利用平方公式得,x+x﹣1=()2﹣2=7,x2+x﹣2=(x+x﹣1)2﹣2=49﹣2=47,代入求解【详解】(1)lg25+lg2•lg50+lg22=lg52+lg2(lg5+1)+lg22=2lg5+lg2•lg5+lg2+lg22=2lg5+lg2+lg2(lg5+lg2)=2(lg5+lg2)=2;(2)由,得,即x+2+x-1=9∴x+x-1=7两边再平方得:x2+2+x-2=49,∴x2+x-2=47∴=【点睛】本题考查了有理指数幂的运算,考查了对数式化简求值,属于基础题19、(1)作图见解析;单调减区间是和(2)0【解析】(1)由图象关于原点对称,补出另一部分,结合图可求出函数的单调减区间,(2)先求出的值,然后根据函数的奇偶性和解析式求解即可【小问1详解】因为函数的图像关于原点对称,所以是R上的奇函数,故由对称性画出图像在R上的单调减区间是和【小问2详解】,所以20、(1);(2),;(3)见解析【解析】(1)由函数的最值求出,由周期求出,由五点法作图求出的值,可得函数的解析式(2)利用正弦函数的单调性,求得函数)的单调递增区间(3)利用正弦函数的定义域、值域,求得函数)在区间上的最大值和最小值试题解析:(1)00200根据表格可得再根据五点法作图可得,故解析式为:(2)令函数的单调递增区间为,.(3)因为,所以.得:.所以,当即时,在区间上的最小值为.当即时,在区间上的最大值为.【点睛】本题主要考查由函数的部分图象求解析式,由函数的最值求出,由周期求出,由五点法作图求出的值,正弦函数的单调性以及定义域、值域,属于基础题21、(1)(2)(3)【解析】分析:(1)先根据二倍角公式以及配角公式化为基本三角函数,再代入求值;(2)根据正弦函数性质确定单调性递增区间,再根据区间之间包含关系列不等式,解得实数的取值范围;(3)先根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44762-2024氯化镧
- 2024年度工程建设项目电梯设备采购及安装合同3篇
- 《厂用电保护讲义》课件
- 04版特许经营协议包含加盟店管理细节
- 《食品营养小知识》课件
- 《n小脑间脑》课件
- 《供应商审核讲义》课件
- 2024年度房地产销售代理合同-关于某房地产项目销售代理的详细合同2篇
- 2024年度环保项目投资与建设技术服务合同
- 篮球课基础教案教育课件
- 建筑工程质量通病与预防措施
- 第21课《蝉》课件-2024-2025学年统编版语文八年级上册
- 【初中数学】第4章基本平面图形单元达标测试题 2024-2025学年北师大版七年级数学上册
- 山东文旅集团有限公司招聘笔试题库2024
- 第1课时观察物体(课件)二年级上册数学人教版
- 反诉状(业主反诉物业)(供参考)
- 2024城镇燃气用环压式不锈钢管道工程技术规程
- 2023年创建省级示范幼儿园汇报材料
- 国开2023法律职业伦理-形考册答案
- 卵巢畸胎瘤PPT优秀课件
- 《航拍应用》PPT课件.ppt
评论
0/150
提交评论