2023届河南省登封市嵩阳高级中学高一数学第一学期期末统考模拟试题含解析_第1页
2023届河南省登封市嵩阳高级中学高一数学第一学期期末统考模拟试题含解析_第2页
2023届河南省登封市嵩阳高级中学高一数学第一学期期末统考模拟试题含解析_第3页
2023届河南省登封市嵩阳高级中学高一数学第一学期期末统考模拟试题含解析_第4页
2023届河南省登封市嵩阳高级中学高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,,,则()A. B.C. D.2.根据表中的数据,可以断定方程的一个根所在的区间是()x-101230.3712.727.3920.09A. B.C. D.3.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt4.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知,求().A.6 B.7C.8 D.96.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3C.92cm3 D.84cm37.如果角的终边经过点,则()A. B.C. D.8.设函数,,则函数的零点个数是A.4 B.3C.2 D.19.命题,则命题p的否定是()A. B.C. D.10.已知函数,则()A.﹣1 B.C. D.311.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则12.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.8二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.圆的圆心到直线的距离为______.14.直线l与平面α所成角为60°,l∩α=A,则m与l所成角的取值范围是_______.15.在中,已知是上的点,且,设,,则=________.(用,表示)16._____三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.18.设向量(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.19.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0050(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值20.已知函数.(1)求不等式的解集;(2)函数,若存在,使得成立,求实数的取值范围;(3)若函数,讨论函数的零点个数.21.设向量a=-1,2,b=(1)求a+2(2)若c=λa+μb,(3)若AB=a+b,BC=a-2b,CD22.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒2、D【解析】将与的值代入,找到使的,即可选出答案.【详解】时,.时,.时,.时,时,.因为.所以方程的一个根在区间内.故选:D.【点睛】本题考查零点存定理,函数连续,若存在,使,则函数在区间上至少有一个零点.属于基础题.3、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D4、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件5、B【解析】利用向量的加法规则求解的坐标,结合模长公式可得.【详解】因为,所以,所以.故选:B.【点睛】本题主要考查平面向量的坐标运算,明确向量的坐标运算规则是求解的关键,侧重考查数学运算的核心素养.6、B【解析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.考点:由三视图求面积、体积.7、D【解析】由三角函数的定义可求得的值.【详解】由三角函数的定义可得.故选:D.【点睛】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.8、B【解析】函数的零点个数就是函数的图象和函数的图象的交点个数,分别画出函数的图象和函数的图象,如图,由图知,它们的交点个数是,函数的零点个数是,故选B.【方法点睛】已知函数零点(方程根)的个数求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.9、A【解析】全称命题的否定是特称命题,并将结论加以否定.【详解】因为命题,所以命题p的否定是,故选:A.10、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.11、C【解析】利用空间位置关系的判断及性质定理进行判断或举反例判断【详解】对于A,若n⊂平面α,显然结论错误,故A错误;对于B,若m⊂α,n⊂β,α∥β,则m∥n或m,n异面,故B错误;对于C,若m⊥n,m⊥α,n⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C正确;对于D,若α⊥β,m⊂α,n⊂β,则m,n位置关系不能确定,故D错误故选C【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题12、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、1【解析】利用点到直线的距离公式可得所求的距离.【详解】圆心坐标为,它到直线的距离为,故答案为:1【点睛】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.14、【解析】根据直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,直线l与平面α所成角的范围,即可求出结果【详解】由于直线l与平面α所成角为60°,直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,而异面直线所成角的范围是(0,],直线m在平面α内,且与直线l异面,故m与l所成角的取值范围是.故答案为【点睛】本题考查直线和平面所成的角的定义和范围,判断直线与平面所成角是直线与平面α内所有直线成的角中最小的一个,是解题的关键15、+##【解析】根据平面向量的线性运算可得答案.【详解】因为,所以,所以可解得故答案为:16、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:6三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求;(2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由求得后,即可求解.【详解】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立如图所示的平面直角坐标系由题意可设点,且直线的斜率为,并经过点,故直线的方程为:,又因点到的距离为,所以,解得或(舍去)所以点坐标为.(2)由题意可知直线的斜率一定存在,故设其直线方程为:,与直线的方程:,联立后解得:,对直线方程:,令,得,所以,解得,所以直线方程为:,即:.【点睛】本题以直线方程的相关知识为背景,旨在考查学生分析和解决问题的能力,属于中档题.18、(Ⅰ)2;(Ⅱ).【解析】(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.19、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据表中已知数据,解得.数据补全如下表:00500且函数表达式为.(Ⅱ)由(Ⅰ)知,得因为对称中心为,令,解得,由于函数的图象关于点成中心对称,令,解得,.由可知,当时,取得最小值.考点:“五点法”画函数在某一个周期内的图象,三角函数的平移变换,三角函数的性质20、(1)(2)(3)答案见解析【解析】(1)根据题意条件,分别求解的定义域和解对数不等式即可完成求解;(2)通过题意条件,找到和两函数值域的关系,分别求解出对应的值域,通过分类讨论即可完成求解;(3)通过题意条件,通过讨论的值,分别作出对应的函数图像,借助换元,观察函数图像的交点状况,从而完成求解.【小问1详解】函数,由,可得,即的定义域为;不等式,所以,即为,解得,则原不等式的解为;【小问2详解】函数,若存在,使得成立,则和在上的值域的交集不为空集;由(1)可知:时,显然单调递减,所以其值域为;若,则在上单调递减,所以的值域为,此时只需,即,所以;若,则在递增,可得的值域为,此时与的交集显然为空集,不满足题意;综上,实数的范围是;小问3详解】由,得,令,则,画出的图象,当,只有一个,对应3个零点,当时,,此时,由,得在,三个分别对应一个零点,共3个,在时,,三个分别对应1个,1个,3个零点,共5个,综上所述:当时,只有1个零点,当或时,有3个零点,当时,有5个零点.【点睛】方法点睛:对于“存在,使得成立”,需要将其转化成两函数值域的关系,即两个函数的值域有交集,需根据函数的具体范围进行适时的分类讨论即可.21、(1)1(2)2(3)证明见解析【解析】(1)先求a+2b=1,0,进而求a+2b;(2)列出方程组,求出λ=-1μ=3,进而求出λ+μ;(【小问1详解】a+2b=【小问2详解】4,-5=λ-1,2+μ1,-1,所以-λ+μ=42λ-μ=-5【小问3详解】因为AC=AB+BC=a+b+22、(1);(2).【解析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论