版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各对角中,终边相同的是()A.和 B.和C.和 D.和2.函数,设,则有A. B.C. D.3.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.4.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.5.命题“,”否定是()A., B.,C., D.,6.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.7.如图,的斜二测直观图为等腰,其中,则原的面积为()A.2 B.4C. D.8.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}9.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为10.函数的零点个数为(
)A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知一个扇形的面积为,半径为,则它的圆心角为______弧度12.已知角的终边经过点,则的值等于______.13.已知则________14.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.15.函数的反函数为___________16.已知函数,的部分图象如图所示,其中点A,B分别是函数的图象的一个零点和一个最低点,且点A的横坐标为,,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义:若函数的定义域为D,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期.(1)下列函数(其中表示不超过x的最大整数),是线周期函数的是____________(直接填写序号);(2)若为线周期函数,其线周期为,求证:为周期函数;(3)若为线周期函数,求的值.18.计算求解(1)(2)已知,,求的值19.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?20.英国数学家泰勒发现了如下公式:,其中,此公式有广泛的用途,例如利用公式得到一些不等式:当时,,.(1)证明:当时,;(2)设,若区间满足当定义域为时,值域也为,则称为的“和谐区间”.(i)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由;(ii)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由.21.已知函数,(1)证明在上是增函数;(2)求在上的最大值及最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用终边相同的角的定义,即可得出结论【详解】若终边相同,则两角差,A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.,故D选项错误.故选:C.【点睛】本题考查终边相同的角的概念,属于基础题.2、D【解析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是减函数,∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).点睛:在比较幂和对数值的大小时,一般化为同底数的幂(利用指数函数性质)或同底数对数(利用对数函数性质),有时也可能化为同指数的幂(利用幂函数性质)比较大小,在不能这样转化时,可借助于中间值比较,如0或1等.把它们与中间值比较后可得出它们的大小3、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B4、D【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.5、B【解析】根据命题的否定的定义判断.【详解】命题“,”的否定是:,故选:B6、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A7、D【解析】首先算出直观图面积,再根据平面图形与直观图面积比为求解即可.【详解】因为等腰是一平面图形的直观图,直角边,所以直角三角形的面积是.又因为平面图形与直观图面积比为,所以原平面图形的面积是.故选:D8、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题9、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.10、B【解析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.12、【解析】根据三角函数定义求出、的值,由此可求得的值.【详解】由三角函数的定义可得,,因此,.故答案为:.13、【解析】分段函数的求值,在不同的区间应使用不同的表达式.【详解】,故答案为:.14、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:15、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.16、##【解析】利用条件可得,进而利用正弦函数的图象的性质可得,再利用正弦函数的性质即求.【详解】由题知,设,则,∴,∴,∴,将点代入,解得,又,∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3).【解析】(1)根据新定义逐一判断即可;(2)根据新定义证明即可;(3)若为线周期函数,则存在非零常数,对任意,都有,可得,解得的值再检验即可.【详解】(1)对于,,所以不是线周期函数,对于,,所以不是线周期函数,对于,,所以是线周期函数;(2)若为线周期函数,其线周期为,则存在非零常数对任意,都有恒成立,因为,所以,所以为周期函数;(3)因为为线周期函数,则存在非零常数,对任意,都有,所以,令,得,令,得,所以,因为,所以,检验:当时,,存在非零常数,对任意,,所以为线周期函数,所以:.【点睛】关键点点睛:本题解题的关键点是对新定义的理解和应用,以及特殊值解决恒成立问题.18、(1);(2).【解析】(1)利用对数运算法则直接计算作答.(2)利用对数换底公式及对数运算法则计算作答.【小问1详解】.【小问2详解】因,,所以.19、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额为:当时,;当时,故,【小问2详解】解:当时,,当时,,当时,,当且仅当,即时,等号成立,因为,所以当(千部)时,所获利润最大,最大利润为:3800万元.20、(1)证明见解析(2)(i)不存在“和谐区间”,理由见解析(ii)存在,有唯一的“和谐区间”【解析】(1)利用来证得结论成立.(2)(i)通过证明方程只有一个实根来判断出此时不存在“和谐区间”.(ii)对的取值进行分类讨论,结合的单调性以及(1)的结论求得唯一的“和谐区间”.【小问1详解】由已知当时,,得,所以当时,.【小问2详解】(i)时,假设存在,则由知,注意到,故,所以在单调递增,于是,即是方程的两个不等实根,易知不是方程的根,由已知,当时,,令,则有时,,即,故方程只有一个实根0,故不存在“和谐区间”.(ii)时,假设存在,则由知若,则由,知,与值域是矛盾,故不存在“和谐区间”,同理,时,也不存在,下面讨论,若,则,故最小值为,于是,所以,所以最大值为2,故,此时的定义域为,值域为,符合题意.若,当时,同理可得,舍去,当时,在上单调递减,所以,于是,若即,则,故,与矛盾;若,同理,矛盾,所以,即,由(1)知当时,,因为,所以,从而,,从而,矛盾,综上所述,有唯一的“和谐区间”.【点睛】对于“新定义”的题目,关键是要运用新定义的知识以及原有的数学知识来进行求解.本题有两个“新定义”,一个是泰勒发现的公式,另一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑施工安全监督合同
- 非专利技术转让合同模板
- 办公室租赁经营合同
- 2024年度企业租赁经营合同
- 2024货物赊欠买卖合同范文
- 2024年度军事训练装载机租赁合同
- 出口合作:肉禽类协议
- 导演与摄影师工作合同模板
- 成都市室内装修工程施工协议示范
- 2024山林流转合同范文
- 单位退费申请表
- 产前筛查规范化流程和质量控制--ppt课件
- 婴幼儿伤害预防与处理习题库
- 百度投诉保证函
- 2.7-植被与自然环境的关系(精品课件)-2020-2021学年高一地理(新教材中图版必修第一册)
- 清欠工作管理制度管理办法
- 三甲评审文件盒资料--终稿
- 铁路项目桥梁墩台身施工方案
- 工作岗位风险评估工作规程
- 智能存包柜(储物柜)产品技术说明书
- 電鍍技術資料大全
评论
0/150
提交评论